Qr: color:"red"
Showing 1 - 25 of 425 results
1.
Nanobody-Based Light-Controllable Systems for Investigating Biology.
Abstract:
Nanobodies, the camelid-derived single-chain variable domain of heavy-chain-only antibodies, are compact in size and exhibit high binding affinity and specificity to their binding partners. As innovative antibody modalities, nanobodies have garnered significant attention in medicine and biological research. To achieve higher spatiotemporal precision, nanobody-based light-controlled systems—such as photobody, optobody, photoactivatable nanobody conjugate inducers of dimerization, and others—have been developed. These systems enable optical control of biological processes while leveraging the advantages of nanobodies as a binding moiety. This concept, summarizes nanobody-based photoregulated systems for investigating biology through light, highlights their advantages and potential limitations, and discusses future directions in this emerging research area.
2.
Multiplexing light-inducible recombinases to control cell fate, Boolean logic, and cell patterning in mammalian cells.
Abstract:
Light-inducible regulatory proteins are powerful tools to interrogate fundamental mechanisms driving cellular behavior. In particular, genetically encoded photosensory domains fused to split proteins can tightly modulate protein activity and gene expression. While light-inducible split protein systems have performed well individually, few multichromatic and orthogonal gene regulation systems exist in mammalian cells. The design space for multichromatic circuits is limited by the small number of orthogonally addressable optogenetic switches and the types of effectors that can be actuated by them. We developed a library of red light-inducible recombinases and directed patterned myogenesis in a mesenchymal fibroblast-like cell line. To address the limited number of light-inducible domains (LIDs) responding to unique excitation spectra, we multiplexed light-inducible recombinases with our “Boolean logic and arithmetic through DNA excision” (BLADE) platform. Multiplexed optogenetic tools will be transformative for understanding the role of multiple interacting genes and their spatial context in endogenous signaling networks.
3.
Engineering plant photoreceptors towards enhancing plant productivity.
Abstract:
Light is a critical environmental factor that governs the growth and development of plants. Plants have specialised photoreceptor proteins, which allow them to sense both quality and quantity of light and drive a wide range of responses critical for optimising growth, resource use and adaptation to changes in environment. Understanding the role of these photoreceptors in plant biology has opened up potential avenues for engineering crops with enhanced productivity by engineering photoreceptor activity and/or action. The ability to manipulate plant genomes through genetic engineering and synthetic biology approaches offers the potential to unlock new agricultural innovations by fine-tuning photoreceptors or photoreceptor pathways that control plant traits of agronomic significance. Additionally, optogenetic tools which allow for precise, light-triggered control of plant responses are emerging as powerful technologies for real-time manipulation of plant cellular responses. As these technologies continue to develop, the integration of photoreceptor engineering and optogenetics into crop breeding programs could potentially revolutionise how plant researchers tackle challenges of plant productivity. Here we provide an overview on the roles of key photoreceptors in regulating agronomically important traits, the current state of plant photoreceptor engineering, the emerging use of optogenetics and synthetic biology, and the practical considerations of applying these approaches to crop improvement. This review seeks to highlight both opportunities and challenges in harnessing photoreceptor engineering approaches for enhancing plant productivity. In this review, we provide an overview on the roles of key photoreceptors in regulating agronomically important traits, the current state of plant photoreceptor engineering, the emerging use of optogenetics and synthetic biology, and the practical considerations of applying these approaches to crop improvement.
4.
Red Light-Activated Reversible Inhibition of Protein Functions by Assembled Trap.
-
Zhou, P
-
Jia, Y
-
Zhang, T
-
Abudukeremu, A
-
He, X
-
Zhang, X
-
Liu, C
-
Li, W
-
Li, Z
-
Sun, L
-
Guang, S
-
Zhou, Z
-
Yuan, Z
-
Lu, X
-
Yu, Y
Abstract:
Red light, characterized by superior tissue penetration and minimal phototoxicity, represents an ideal wavelength for optogenetic applications. However, the existing tools for reversible protein inhibition by red light remain limited. Here, we introduce R-LARIAT (red light-activated reversible inhibition by assembled trap), a novel optogenetic system enabling precise spatiotemporal control of protein function via 660 nm red-light-induced protein clustering. Our system harnesses the rapid and reversible binding of engineered light-dependent binders (LDBs) to the bacterial phytochrome DrBphP, which utilizes the endogenous mammalian biliverdin chromophore for red light absorption. By fusing LDBs with single-domain antibodies targeting epitope-tagged proteins (e.g., GFP), R-LARIAT enables the rapid sequestration of diverse proteins into light-responsive clusters. This approach demonstrates high light sensitivity, clustering efficiency, and sustained stability. As a proof of concept, R-LARIAT-mediated sequestration of tubulin inhibits cell cycle progression in HeLa cells. This system expands the optogenetic toolbox for studying dynamic biological processes with high spatial and temporal resolution and holds the potential for applications in living tissues.
5.
Empowering bacteria with light: Optogenetically engineered bacteria for light-controlled disease theranostics and regulation.
Abstract:
Bacterial therapy has emerged as a promising approach for disease treatment due to its environmental sensitivity, immunogenicity, and modifiability. However, the clinical application of engineered bacteria is limited by differences of expression levels in patients and possible off-targeting. Optogenetics, which combines optics and genetics, offers key advantages such as remote controllability, non-invasiveness, and precise spatiotemporal control. By utilizing optogenetic tools, the behavior of engineered bacteria can be finely regulated, enabling on-demand control of the dosage and location of their therapeutic products. In this review, we highlight the latest advancements in the optogenetic engineering of bacteria for light-controlled disease theranostics and therapeutic regulation. By constructing a three-dimensional analytical framework of “sense-produce-apply”, we begin by discussing the key components of bacterial optogenetic systems, categorizing them based on their photosensitive protein response to blue, green, and red light. Next, we introduce innovative light-producing tools that extend beyond traditional light sources. Then, special emphasis is placed on the biomedical applications of optogenetically engineered bacteria in treating diseases such as cancer, intestinal inflammation and systemic disease regulation. Finally, we address the challenges and future prospects of bacterial optogenetics, outlining potential directions for enhancing the safety and efficacy of light-controlled bacterial therapies. This review aims to provide insights and strategies for researchers working to advance the application of optogenetically engineered bacteria in drug delivery, precision medicine and therapeutic regulation.
6.
Insight into Optogenetics for Diabetes Management.
Abstract:
Optogenetics is an interdisciplinary field wherein optical and genetic engineering methods are employed together to impart photounresponsive cells (usually of higher animals) the ability to respond to light through expression of light-sensitive proteins sourced generally from algae or bacteria. It enables precise spatiotemporal control of various cellular activities through light stimulation. Recently, emerging as a synthetic biology-based approach for diabetes management, optogenetics can provide user-control of hormonal secretion by photoactivation of a suitably modified cell. For around a decade, studies have been performed on the applicability of various light-sensitive proteins and their incorporation into pancreatic and nonpancreatic cells for photoinduced insulin secretion. Further, in vivo studies demonstrated amelioration of diabetes in mouse models through photoactivation of the implanted engineered cells. Here, we attempt to highlight the various optogenetic approaches explored in terms of influencing the insulin secretion pathway at different points in light of the natural insulin secretion pathway in pancreatic β cells. We also discuss how transgenic cells of both pancreatic as well as nonpancreatic origin are exploited for photoinduced secretion of insulin. Recent advances on integration of “smart” technologies for remote control of light irradiation and thereby insulin secretion from implanted engineered cells in preclinical models are also described. Additionally, the need for further comprehensive studies on irradiation parameters, red-shifted opsins, and host–cell interaction is stressed to realize the full potential of optogenetics as a clinically applicable modality providing user-controlled “on demand” hormonal secretion for better management of diabetes.
7.
Nonlinear optical properties of photosensory core modules of monomeric and dimeric bacterial phytochromes.
-
Galiakhmetova, D
-
Koviarov, A
-
Dremin, V
-
Gric, T
-
Stoliarov, D
-
Gorodetsky, A
-
Maimaris, M
-
Shcherbakova, DM
-
Baloban, M
-
Verkhusha, VV
-
Sokolovski, SG
-
Rafailov, E
Abstract:
Near-infrared (NIR) fluorescent proteins and optogenetic tools derived from bacterial phytochromes' photosensory core modules (PCMs) operate within the first (NIR-I) tissue transparency window under single-photon activation. Leveraging two-photon (2P) light in the second transparency window (NIR-II) for photoswitching bacterial phytochromes between Pr and Pfr absorption states offers significant advantages, including enhanced tissue penetration, spatial resolution, and signal-to-noise ratio. However, 2P photoconversion of bacterial phytochromes remains understudied. Here, we study the non-linear Pr to Pfr photoconversion's dependence on irradiation wavelength (1180–1360 nm) and energy fluence (41–339 mJ/cm2) for the PCM of DrBphP bacterial phytochrome. Our findings reveal substantially higher photoconversion efficiency for the engineered monomeric DrBphP-PCM (73%) compared to the natural dimeric DrBphP-PCM (57%). Molecular mechanical calculations, based on experimentally determined 2P absorption cross-section coefficients for the monomer (167 GM) and dimer (170 GM), further verify these results. We demonstrate both short- (SWE) and long-wavelength excitation (LWE) fluorescence of the Soret band using 405 and 810–890 nm laser sources, respectively. Under LWE, fluorescence emission (724 nm) exhibits saturation at a peak power density of 1.5 GW/cm2. For SWE, we observe linear degradation of fluorescence for both DrBphP-PCMs, decreasing by 32% as the temperature rises from 19 to 38°C. Conversely, under LWE, the monomeric DrBphP-PCM's brightness increases up to 182% (at 37°C), surpassing the dimeric form's fluorescence rise by 39%. These findings establish the monomeric DrBphP-PCM as a promising template for developing NIR imaging and optogenetic probes operating under the determined optimal parameters for its 2P photoconversion and LWE fluorescence.
8.
Emerging roles of transcriptional condensates as temporal signal integrators.
Abstract:
Transcription factors relay information from the external environment to gene regulatory networks that control cell physiology. To confer signalling specificity, robustness and coordination, these signalling networks use temporal communication codes, such as the amplitude, duration or frequency of signals. Although much is known about how temporal information is encoded, a mechanistic understanding of how gene regulatory networks decode signalling dynamics is lacking. Recent advances in our understanding of phase separation of transcriptional condensates provide new biophysical frameworks for both temporal encoding and decoding mechanisms. In this Perspective, we summarize the mechanisms by which transcriptional condensates could enable temporal decoding through signal adaptation, memory and persistence. We further outline methods to probe and manipulate dynamic communication codes of transcription factors and condensates to rationally control gene activation.
9.
Recent Developments in the Optical Control of Adrenergic Signaling.
Abstract:
Adrenoceptors (ARs) play a vital role in various physiological processes and are key therapeutic targets. The advent of optical control techniques, including optogenetics and photopharmacology, offers the potential to modulate AR signaling with precise temporal and spatial resolution. In this review, we summarize the latest advancements in the optical control of AR signaling, encompassing optogenetics, photocaged compounds, and photoswitchable compounds. We also discuss the limitations of current tools and provide an outlook on the next generation of optogenetic and photopharmacological tools. These emerging optical technologies not only enhance our understanding of AR signaling but also pave the way for potential therapeutic developments.
10.
Near-infrared optogenetic engineering of bacteria for cancer therapy.
Abstract:
A near-infrared optogenetic system was developed for the controlled expression of therapeutics in engineered oncolytic bacteria, demonstrating significant anti-tumor efficacy in multiple tumor mouse models. This approach offers a non-invasive, customizable method for targeted solid tumor therapy and has broader applications in engineered living therapeutics.
11.
Effects of binding partners on thermal reversion rates of photoswitchable molecules.
Abstract:
The binding of photoswitchable molecules to partners forms the basis of many naturally occurring light-dependent signaling pathways and various photopharmacological and optogenetic tools. A critical parameter affecting the function of these molecules is the thermal half-life of the light state. Reports in the literature indicate that, in some cases, a binding partner can significantly influence the thermal half-life, while in other cases it has no effect. Here, we present a unifying framework for quantitatively analyzing the effects of binding partners on thermal reversion rates. We focus on photoswitchable protein/binder interactions involving LOV domains, photoactive yellow protein, and CBCR GAF domains with partners that bind either the light or the dark state of the photoswitchable domain. We show that the effect of a binding partner depends on the extent to which the transition state for reversion resembles the dark state or the light state. We quantify this resemblance with a ϕswitching value, where ϕswitching = 1 if the conformation of the part of the photoswitchable molecule that interacts with the binding partner closely resembles its dark state conformation and ϕswitching = 0 if it resembles its light state. In addition to providing information on the transition state for switching, this analysis can guide the design of photoswitchable systems that retain useful thermal half-lives in practice. The analysis also provides a basis for the use of simple kinetic measurements to determine effective changes in affinity even in complex milieu.
12.
Enhanced or reversible RNA N6-methyladenosine editing by red/far-red light induction.
-
Tang, H
-
Han, S
-
Jie, Y
-
Jiang, X
-
Zhang, Y
-
Peng, J
-
Wang, F
-
Li, X
-
Zhou, X
-
Jiang, W
-
Weng, X
Abstract:
The RNA N6-methyladenosine (m6A) modification is a critical regulator of various biological processes, but precise and dynamic control of m6A remains a challenge. In this work, we present a red/far-red light-inducible m6A editing system that enables efficient and reversible modulation of m6A levels with minimal off-target effects. By engineering the CRISPR dCas13 protein and sgRNA with two pairs of light-inducible heterodimerizing proteins, ΔphyA/FHY1 and Bphp1/PspR2, we achieved targeted recruitment of m6A effectors. This system significantly enhances m6A writing efficiency and allows dynamic regulation of m6A deposition and removal on specific transcripts, such as SOX2 and ACTB. Notably, reversible m6A editing was achieved through cyclic modulation at a single target site, demonstrating the ability to influence mRNA expression and modulate the differentiation state of human embryonic stem cells. This optogenetic platform offers a precise, versatile tool for cyclic and reversible m6A regulation, with broad implications for understanding RNA biology and its potential applications in research and medicine.
13.
Protein design accelerates the development and application of optogenetic tools.
Abstract:
Optogenetics has substantially enhanced our understanding of biological processes by enabling high-precision tracking and manipulation of individual cells. It relies on photosensitive proteins to monitor and control cellular activities, thereby paving the way for significant advancements in complex system research. Photosensitive proteins play a vital role in the development of optogenetics, facilitating the establishment of cutting-edge methods. Recent breakthroughs in protein design have opened up opportunities to develop protein-based tools that can precisely manipulate and monitor cellular activities. These advancements will significantly accelerate the development and application of optogenetic tools. This article emphasizes the pivotal role of protein design in the development of optogenetic tools, offering insights into potential future directions. We begin by providing an introduction to the historical development and fundamental principles of optogenetics, followed by an exploration of the operational mechanisms of key photosensitive domains, which includes clarifying the conformational changes they undergo in response to light, such as allosteric modulation and dimerization processes. Building on this foundation, we reveal the development of protein design tools that will enable the creation of even more sophisticated optogenetic techniques.
14.
Live imaging of paracrine signaling: Advances in visualization and tracking techniques.
Abstract:
Live imaging techniques have revolutionized our understanding of paracrine signaling, a crucial form of cell-to-cell communication in biological processes. This review examines recent advances in visualizing and tracking paracrine factors through four key stages: secretion from producing cells, diffusion through extracellular space, binding to target cells, and activation of intracellular signaling within target cells. Paracrine factor secretion can be directly visualized by fluorescent protein tagging to ligand, or indirectly by visualizing the cleavage of the transmembrane pro-ligands or plasma membrane fusion of endosomes comprising the paracrine factors. Diffusion of paracrine factors has been studied using techniques such as fluorescence correlation spectroscopy (FCS), fluorescence recovery after photobleaching (FRAP), fluorescence decay after photoactivation (FDAP), and single-molecule tracking. Binding of paracrine factors to target cells has been visualized through various biosensors, including GPCR-activation-based (GRAB) sensors and Förster resonance energy transfer (FRET) probes for receptor tyrosine kinases. Finally, activation of intracellular signaling is monitored within the target cells by biosensors for second messengers, transcription factors, and so on. In addition to the imaging tools, the review also highlights emerging optogenetic and chemogenetic tools for triggering the release of paracrine factors, which is essential for associating the paracrine factor secretion to biological outcomes during the bioimaging of paracrine factor signaling.Key words: paracrine signaling, live imaging, biosensors, optogenetics, chemogenetics.
15.
Spatiotemporal dissection of collective cell migration and tissue morphogenesis during development by optogenetics.
Abstract:
Collective cell migration and tissue morphogenesis play a variety of important roles in the development of many species. Tissue morphogenesis often generates mechanical forces that alter cell shapes and arrangements, resembling collective cell migration-like behaviors. Genetic methods have been widely used to study collective cell migration and its like behavior, advancing our understanding of these processes during development. However, a growing body of research shows that collective cell migration during development is not a simple behavior but is often combined with other cellular and tissue processes. In addition, different surrounding environments can also influence migrating cells, further complicating collective cell migration during development. Due to the complexity of developmental processes and tissues, traditional genetic approaches often encounter challenges and limitations. Thus, some methods with spatiotemporal control become urgent in dissecting collective cell migration and tissue morphogenesis during development. Optogenetics is a method that combines optics and genetics, providing a perfect strategy for spatiotemporally controlling corresponding protein activity in subcellular, cellular or tissue levels. In this review, we introduce the basic mechanisms underlying different optogenetic tools. Then, we demonstrate how optogenetic methods have been applied in vivo to dissect collective cell migration and tissue morphogenesis during development. Additionally, we describe some promising optogenetic approaches for advancing this field. Together, this review will guide and facilitate future studies of collective cell migration in vivo and tissue morphogenesis by optogenetics.
16.
The current landscape of optogenetics for the enhancement of adoptive T-cell therapy.
Abstract:
Immunotherapy, the medicinal modulation of a host's immune response to better combat a pathogen or disease, has transformed cancer treatments in recent decades. T-cells, an important component of the adaptive immune system, are further paramount for therapy success. Recent immunotherapeutic modalities have therefore more frequently targeted T-cells for cancer treatments and other pathologies and are termed adoptive T-cell (ATC) therapies. ATC therapies characterize various types of immunotherapies but predominantly fall into three established techniques: tumour-infiltrating lymphocyte, chimeric antigen receptor T-cell, and engineered T-cell receptor therapies. Despite promising clinical results, all ATC therapy types fall short in providing long-term sustained tumour clearance while being particularly ineffective against solid tumours, with substantial developments aiming to understand and prevent the typical drawbacks of ATC therapy. Optogenetics is a relatively recent development, incorporating light-sensitive protein domains into cells or tissues of interest to optically tune specific biological processes. Optogenetic manipulation of immunological functions is rapidly becoming an investigative tool in immunology, with light-sensitive systems now being used to optimize many cellular therapeutic modalities and ATC therapies. This review focuses on how optogenetic approaches are currently utilized to improve ATC therapy in clinical settings by deepening our understanding of the molecular rationale behind therapy success. Moreover, this review further critiques current immuno-optogenetic systems and speculates on the expansion of recent developments, enhancing current ATC-based therapeutic modalities to pave the way for clinical progress.
17.
Environment signal dependent biocontainment systems for engineered organisms: Leveraging triggered responses and combinatorial systems.
Abstract:
As synthetic biology advances, the necessity for robust biocontainment strategies for genetically engineered organisms (GEOs) grows increasingly critical to mitigate biosafety risks related to their potential environmental release. This paper aims to evaluate environment signal-dependent biocontainment systems for engineered organisms, focusing specifically on leveraging triggered responses and combinatorial systems. There are different types of triggers—chemical, light, temperature, and pH—this review illustrates how these systems can be designed to respond to environmental signals, ensuring a higher safety profile. It also focuses on combinatorial biocontainment to avoid consequences of unintended GEO release into an external environment. Case studies are discussed to demonstrate the practical applications of these systems in real-world scenarios.
18.
Illuminating the future of food microbial control: From optical tools to Optogenetic tools.
Abstract:
Light as an environmental signal can effectively regulate various biological processes in microbial systems. Optical and optogenetic tools are able to utilize light for precise control methods with minimal interference. Recently, research on these tools has extended to the field of microbiology. Distinguishing from existing reviews, this review narrows the scope of application into food sector, focusing on advances in optical and optogenetic tools for microbial control, including optical tools targeting pathogenic or probiotic bacteria for non-thermal sterilization, antimicrobial photodynamic therapy, or photobiomodulation, combined with nanomaterials as photosensors for food analysis. As well as using optogenetic tools for more convenient and precise control in food production processes, covering reversible induction, metabolic flux regulation, biofilm formation, and inhibition. These tools offer new solutions to goals that cannot be achieved by traditional methods, and they are still maturing to explore other uses in the food field.
19.
Genetically-stable engineered optogenetic gene switches modulate spatial cell morphogenesis in two- and three-dimensional tissue cultures.
-
Beyer, HM
-
Kumar, S
-
Nieke, M
-
Diehl, CMC
-
Tang, K
-
Shumka, S
-
Koh, CS
-
Fleck, C
-
Davies, JA
-
Khammash, M
-
Zurbriggen, MD
Abstract:
Recent advances in tissue engineering have been remarkable, yet the precise control of cellular behavior in 2D and 3D cultures remains challenging. One approach to address this limitation is to genomically engineer optogenetic control of cellular processes into tissues using gene switches that can operate with only a few genomic copies. Here, we implement blue and red light-responsive gene switches to engineer genomically stable two- and three-dimensional mammalian tissue models. Notably, we achieve precise control of cell death and morphogen-directed patterning in 2D and 3D tissues by optogenetically regulating cell necroptosis and synthetic WNT3A signaling at high spatiotemporal resolution. This is accomplished using custom-built patterned LED systems, including digital mirrors and photomasks, as well as laser techniques. These advancements demonstrate the capability of precise spatiotemporal modulation in tissue engineering and open up new avenues for developing programmable 3D tissue and organ models, with significant implications for biomedical research and therapeutic applications.
20.
A sensitive red/far-red photoswitch for controllable gene therapy in mouse models of metabolic diseases.
Abstract:
Red light optogenetic systems are in high demand for the precise control of gene expression for gene- and cell-based therapies. Here, we report a red/far-red light-inducible photoswitch (REDLIP) system based on the chimeric photosensory protein FnBphP (Fn-REDLIP) or PnBphP (Pn-REDLIP) and their interaction partner LDB3, which enables efficient dynamic regulation of gene expression with a timescale of seconds without exogenous administration of a chromophore in mammals. We use the REDLIP system to establish the REDLIP-mediated CRISPR-dCas9 (REDLIPcas) system, enabling optogenetic activation of endogenous target genes in mammalian cells and mice. The REDLIP system is small enough to support packaging into adeno-associated viruses (AAVs), facilitating its therapeutic application. Demonstrating its capacity to treat metabolic diseases, we show that an AAV-delivered Fn-REDLIP system achieved optogenetic control of insulin expression to effectively lower blood glucose levels in type 1 diabetes model mice and control an anti-obesity therapeutic protein (thymic stromal lymphopoietin, TSLP) to reduce body weight in obesity model mice. REDLIP is a compact and sensitive optogenetic tool for reversible and non-invasive control that can facilitate basic biological and biomedical research.
21.
Red Light Responsive Cre Recombinase for Bacterial Optogenetics.
Abstract:
Optogenetic tools have been used in a wide range of microbial engineering applications that benefit from the tunable, spatiotemporal control that light affords. However, the majority of current optogenetic constructs for bacteria respond to blue light, limiting the potential for multichromatic control. In addition, other wavelengths offer potential benefits over blue light, including improved penetration of dense cultures and reduced potential for toxicity. In this study, we introduce OptoCre-REDMAP, a red light inducible Cre recombinase system in Escherichia coli. This system harnesses the plant photoreceptors PhyA and FHY1 and a split version of Cre recombinase to achieve precise control over gene expression and DNA excision. We optimized the design by modifying the start codon of Cre and characterized the impact of different levels of induction to find conditions that produced minimal basal expression in the dark and induced full activation within 4 h of red light exposure. We characterized the system's sensitivity to ambient light, red light intensity, and exposure time, finding OptoCre-REDMAP to be reliable and flexible across a range of conditions. In coculture experiments with OptoCre-REDMAP and the blue light responsive OptoCre-VVD, we found that the systems responded orthogonally to red and blue light inputs. Direct comparisons between red and blue light induction with OptoCre-REDMAP and OptoCre-VVD demonstrated the superior penetration properties of red light. OptoCre-REDMAP's robust and selective response to red light makes it suitable for advanced synthetic biology applications, particularly those requiring precise multichromatic control.
22.
Cell-cell junctions in focus - imaging junctional architectures and dynamics at high resolution.
Abstract:
Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded. In this Review, we explore new insights from studies using super-resolution and volume electron microscopy into the nanoscale organization of these junctional complexes as well as the roles of the junction-associated cytoskeleton, neighboring organelles and the plasma membrane. Furthermore, we provide an overview of junction- and cytoskeletal-related biosensors and optogenetic probes that have contributed to these advances and discuss how these microscopy tools enhance our understanding of junctional dynamics across cellular environments.
23.
Optogenetic Control of Condensates: Principles and Applications.
Abstract:
Biomolecular condensates appear throughout cell physiology and pathology, but the specific role of condensation or its dynamics is often difficult to determine. Optogenetics offers an expanding toolset to address these challenges, providing tools to directly control condensation of arbitrary proteins with precision over their formation, dissolution, and patterning in space and time. In this review, we describe the current state of the field for optogenetic control of condensation. We survey the proteins and their derivatives that form the foundation of this toolset, and we discuss the factors that distinguish them to enable appropriate selection for a given application. We also describe recent examples of the ways in which optogenetic condensation has been used in both basic and applied studies. Finally, we discuss important design considerations when engineering new proteins for optogenetic condensation, and we preview future innovations that will further empower this toolset in the coming years.
24.
Advanced deep-tissue imaging and manipulation enabled by biliverdin reductase knockout.
-
Kasatkina, LA
-
Ma, C
-
Sheng, H
-
Lowerison, M
-
Menozzi, L
-
Baloban, M
-
Tang, Y
-
Xu, Y
-
Humayun, L
-
Vu, T
-
Song, P
-
Yao, J
-
Verkhusha, VV
Abstract:
We developed near-infrared (NIR) photoacoustic and fluorescence probes, as well as optogenetic tools from bacteriophytochromes, and enhanced their performance using biliverdin reductase-A knock-out model (Blvra-/-). Blvra-/- elevates endogenous heme-derived biliverdin chromophore for bacteriophytochrome-derived NIR constructs. Consequently, light-controlled transcription with IsPadC-based optogenetic tool improved up to 25-fold compared to wild-type cells, with 100-fold activation in Blvra-/- neurons. In vivo, light-induced insulin production in Blvra-/- reduced blood glucose in diabetes by ∼60%, indicating high potential for optogenetic therapy. Using 3D photoacoustic, ultrasound, and two-photon fluorescence imaging, we overcame depth limitations of recording NIR probes. We achieved simultaneous photoacoustic imaging of DrBphP in neurons and super-resolution ultrasound localization microscopy of blood vessels ∼7 mm deep in the brain, with intact scalp and skull. Two-photon microscopy provided cell-level resolution of miRFP720-expressing neurons ∼2.2 mm deep. Blvra-/- significantly enhances efficacy of biliverdin-dependent NIR systems, making it promising platform for interrogation and manipulation of biological processes.
25.
OptoAssay-Light-controlled dynamic bioassay using optogenetic switches.
Abstract:
Circumventing the limitations of current bioassays, we introduce a light-controlled assay, OptoAssay, toward wash- and pump-free point-of-care diagnostics. Extending the capabilities of standard bioassays with light-dependent and reversible interaction of optogenetic switches, OptoAssays enable a bidirectional movement of assay components, only by changing the wavelength of light. Demonstrating exceptional versatility, the OptoAssay showcases its efficacy on various substrates, delivering a dynamic bioassay format. The applicability of the OptoAssay is successfully demonstrated by the calibration of a competitive model assay, resulting in a superior limit of detection of 8 pg ml-1, which is beyond those of conventional ELISA tests. In the future, combined with smartphones, OptoAssays could obviate the need for external flow control systems such as pumps or valves and signal readout devices, enabling on-site analysis in resource-limited settings.