Qr: switch:"LOV domains"
Showing 1 - 25 of 1025 results
1.
Orthogonal replication with optogenetic selection evolves yeast JEN1 into a mevalonate transporter.
Abstract:
The in vivo continuous evolution system OrthoRep (orthogonal replication) is a powerful strategy for rapid enzyme evolution in Saccharomyces cerevisiae that diversifies genes at a rate exceeding the endogenous genome mutagenesis rate by several orders of magnitude. However, it is difficult to neofunctionalize genes using OrthoRep partly because of the way selection pressures are applied. Here we combine OrthoRep with optogenetics in a selection strategy we call OptoRep, which allows fine-tuning of selection pressure with light. With this capability, we evolved a truncated form of the endogenous monocarboxylate transporter JEN1 (JEN1t) into a de novo mevalonate importer. We demonstrate the functionality of the evolved JEN1t (JEN1tY180C/G) in the production of farnesene, a renewable aviation biofuel, from mevalonate fed to fermentation media or produced by microbial consortia. This study shows that the light-induced complementation of OptoRep may improve the ability to evolve functions not currently accessible for selection, while its fine tunability of selection pressure may allow the continuous evolution of genes whose desired function has a restrictive range between providing effective selection and cellular viability
2.
Light-Driven Enzyme Catalysis: Ultrafast Mechanisms and Biochemical Implications.
Abstract:
Light-activated enzymes are an important class of biocatalysts in which light energy is directly converted into biochemical activity. In most cases the light absorbing group is the isoalloxazine ring of an embedded flavin cofactor and in general two types of mechanism are in operation depending on whether the excited chromophore directly participates in catalysis or where photoexcitation triggers conformational changes that modulate the activity of a downstream output partner. This review will summarize studies on DNA photolyase, fatty acid photodecarboxylase (FAP), the monooxygenase PqsL, and flavin-dependent ene-reductases, where flavin radicals generated by excitation are directly used in the reactions catalyzed by these enzymes, and the blue light using FAD (BLUF) and light oxygen voltage (LOV) domain photoreceptors where flavin excitation drives ultrafast structural changes that ultimately result in enzyme activation. Recent advances in methods such as time-resolved spectroscopy and structural imaging have enabled unprecedented insight into the ultrafast dynamics that underly the mechanism of light-activated enzymes, and here we highlight how understanding ultrafast protein dynamics not only provides valuable insights into natural phototransduction processes but also opens new avenues for enzyme engineering and consequent applications in fields such as optogenetics.
3.
Balancing Doses of EL222 and Light Improves Optogenetic Induction of Protein Production in Komagataella phaffii.
Abstract:
Komagataella phaffii, also known as Pichia pastoris, is a powerful host for recombinant protein production, in part due to its exceptionally strong and tightly controlled PAOX1 promoter. Most K. phaffii bioprocesses for recombinant protein production rely on PAOX1 to achieve dynamic control in two-phase processes. Cells are first grown under conditions that repress PAOX1 (growth phase), followed by methanol-induced recombinant protein expression (production phase). In this study, we propose a methanol-free approach for dynamic metabolic control in K. phaffii using optogenetics, which can help enhance input tunability and flexibility in process optimization and control. The light-responsive transcription factor EL222 from Erythrobacter litoralis is used to regulate protein production from the PC120 promoter in K. phaffii with blue light. We used two system designs to explore the advantages and disadvantages of coupling or decoupling EL222 integration with that of the gene of interest. We investigate the relationship between EL222 gene copy number and light dosage to improve production efficiency for intracellular and secreted proteins. Experiments in lab-scale bioreactors demonstrate the feasibility of the outlined optogenetic systems as potential alternatives to conventional methanol-inducible bioprocesses using K. phaffii.
4.
Nanobody-Based Light-Controllable Systems for Investigating Biology.
Abstract:
Nanobodies, the camelid-derived single-chain variable domain of heavy-chain-only antibodies, are compact in size and exhibit high binding affinity and specificity to their binding partners. As innovative antibody modalities, nanobodies have garnered significant attention in medicine and biological research. To achieve higher spatiotemporal precision, nanobody-based light-controlled systems—such as photobody, optobody, photoactivatable nanobody conjugate inducers of dimerization, and others—have been developed. These systems enable optical control of biological processes while leveraging the advantages of nanobodies as a binding moiety. This concept, summarizes nanobody-based photoregulated systems for investigating biology through light, highlights their advantages and potential limitations, and discusses future directions in this emerging research area.
5.
Digitizing the Blue Light-Activated T7 RNA Polymerase System with a tet-Controlled Riboregulator.
Abstract:
Optogenetic systems offer precise control over gene expression, but leaky activity in the dark limits their dynamic range and, consequently, their applicability. Here, we enhanced an optogenetic system based on a split T7 RNA polymerase fused to blue-light-inducible Magnets by incorporating a tet-controlled riboregulatory module. This module exploits the photosensitivity of anhydrotetracycline and the designability of synthetic small RNAs to digitize light-controlled gene expression, implementing a repressive action over the translation of a polymerase fragment gene that is relieved with blue light. Our engineered system exhibited 13-fold improvement in dynamic range upon blue light exposure, which even raised to 23-fold improvement when using cells preadapted to chemical induction. As a functional demonstration, we implemented light-controlled antibiotic resistance in bacteria. Such integration of regulatory layers represents a suitable strategy for engineering better circuits for light-based biotechnological applications.
6.
Multiplexing light-inducible recombinases to control cell fate, Boolean logic, and cell patterning in mammalian cells.
Abstract:
Light-inducible regulatory proteins are powerful tools to interrogate fundamental mechanisms driving cellular behavior. In particular, genetically encoded photosensory domains fused to split proteins can tightly modulate protein activity and gene expression. While light-inducible split protein systems have performed well individually, few multichromatic and orthogonal gene regulation systems exist in mammalian cells. The design space for multichromatic circuits is limited by the small number of orthogonally addressable optogenetic switches and the types of effectors that can be actuated by them. We developed a library of red light-inducible recombinases and directed patterned myogenesis in a mesenchymal fibroblast-like cell line. To address the limited number of light-inducible domains (LIDs) responding to unique excitation spectra, we multiplexed light-inducible recombinases with our “Boolean logic and arithmetic through DNA excision” (BLADE) platform. Multiplexed optogenetic tools will be transformative for understanding the role of multiple interacting genes and their spatial context in endogenous signaling networks.
7.
Engineering plant photoreceptors towards enhancing plant productivity.
Abstract:
Light is a critical environmental factor that governs the growth and development of plants. Plants have specialised photoreceptor proteins, which allow them to sense both quality and quantity of light and drive a wide range of responses critical for optimising growth, resource use and adaptation to changes in environment. Understanding the role of these photoreceptors in plant biology has opened up potential avenues for engineering crops with enhanced productivity by engineering photoreceptor activity and/or action. The ability to manipulate plant genomes through genetic engineering and synthetic biology approaches offers the potential to unlock new agricultural innovations by fine-tuning photoreceptors or photoreceptor pathways that control plant traits of agronomic significance. Additionally, optogenetic tools which allow for precise, light-triggered control of plant responses are emerging as powerful technologies for real-time manipulation of plant cellular responses. As these technologies continue to develop, the integration of photoreceptor engineering and optogenetics into crop breeding programs could potentially revolutionise how plant researchers tackle challenges of plant productivity. Here we provide an overview on the roles of key photoreceptors in regulating agronomically important traits, the current state of plant photoreceptor engineering, the emerging use of optogenetics and synthetic biology, and the practical considerations of applying these approaches to crop improvement. This review seeks to highlight both opportunities and challenges in harnessing photoreceptor engineering approaches for enhancing plant productivity. In this review, we provide an overview on the roles of key photoreceptors in regulating agronomically important traits, the current state of plant photoreceptor engineering, the emerging use of optogenetics and synthetic biology, and the practical considerations of applying these approaches to crop improvement.
8.
Empowering bacteria with light: Optogenetically engineered bacteria for light-controlled disease theranostics and regulation.
Abstract:
Bacterial therapy has emerged as a promising approach for disease treatment due to its environmental sensitivity, immunogenicity, and modifiability. However, the clinical application of engineered bacteria is limited by differences of expression levels in patients and possible off-targeting. Optogenetics, which combines optics and genetics, offers key advantages such as remote controllability, non-invasiveness, and precise spatiotemporal control. By utilizing optogenetic tools, the behavior of engineered bacteria can be finely regulated, enabling on-demand control of the dosage and location of their therapeutic products. In this review, we highlight the latest advancements in the optogenetic engineering of bacteria for light-controlled disease theranostics and therapeutic regulation. By constructing a three-dimensional analytical framework of “sense-produce-apply”, we begin by discussing the key components of bacterial optogenetic systems, categorizing them based on their photosensitive protein response to blue, green, and red light. Next, we introduce innovative light-producing tools that extend beyond traditional light sources. Then, special emphasis is placed on the biomedical applications of optogenetically engineered bacteria in treating diseases such as cancer, intestinal inflammation and systemic disease regulation. Finally, we address the challenges and future prospects of bacterial optogenetics, outlining potential directions for enhancing the safety and efficacy of light-controlled bacterial therapies. This review aims to provide insights and strategies for researchers working to advance the application of optogenetically engineered bacteria in drug delivery, precision medicine and therapeutic regulation.
9.
Insight into Optogenetics for Diabetes Management.
Abstract:
Optogenetics is an interdisciplinary field wherein optical and genetic engineering methods are employed together to impart photounresponsive cells (usually of higher animals) the ability to respond to light through expression of light-sensitive proteins sourced generally from algae or bacteria. It enables precise spatiotemporal control of various cellular activities through light stimulation. Recently, emerging as a synthetic biology-based approach for diabetes management, optogenetics can provide user-control of hormonal secretion by photoactivation of a suitably modified cell. For around a decade, studies have been performed on the applicability of various light-sensitive proteins and their incorporation into pancreatic and nonpancreatic cells for photoinduced insulin secretion. Further, in vivo studies demonstrated amelioration of diabetes in mouse models through photoactivation of the implanted engineered cells. Here, we attempt to highlight the various optogenetic approaches explored in terms of influencing the insulin secretion pathway at different points in light of the natural insulin secretion pathway in pancreatic β cells. We also discuss how transgenic cells of both pancreatic as well as nonpancreatic origin are exploited for photoinduced secretion of insulin. Recent advances on integration of “smart” technologies for remote control of light irradiation and thereby insulin secretion from implanted engineered cells in preclinical models are also described. Additionally, the need for further comprehensive studies on irradiation parameters, red-shifted opsins, and host–cell interaction is stressed to realize the full potential of optogenetics as a clinically applicable modality providing user-controlled “on demand” hormonal secretion for better management of diabetes.
10.
Cryo-ET of actin cytoskeleton and membrane structure in lamellipodia formation using optogenetics.
-
Inaba, H
-
Imasaki, T
-
Aoyama, K
-
Yoshihara, S
-
Takazaki, H
-
Kato, T
-
Goto, H
-
Mitsuoka, K
-
Nitta, R
-
Nakata, T
Abstract:
Lamellipodia are sheet-like protrusions essential for cell migration and endocytosis, but their ultrastructural dynamics remain poorly understood because conventional electron microscopy lacks temporal resolution. Here, we combined optogenetics with cryo-electron tomography (cryo-ET) to visualize the actin cytoskeleton and membrane structures during lamellipodia formation with temporal precision. Using photoactivatable-Rac1 (PA-Rac1) in COS-7 cells, we induced lamellipodia formation with a 2-min blue light irradiation, rapidly vitrified samples, and analyzed their ultrastructure with cryo-ET. We obtained 16 tomograms of lamellipodia at different degrees of extension from three cells. These revealed small protrusions with unbundled actin filaments, “mini filopodia” composed of short, bundled actin filaments at the leading edge, and actin bundles running nearly parallel to the leading edge within inner regions of lamellipodia, suggesting dynamic reorganizations of the actin cytoskeleton. This approach provides a powerful framework for elucidating the ultrastructural dynamics of cellular processes with precise temporal control.
11.
An optogenetic toolkit for robust activation of FGF, BMP, & Nodal signaling in zebrafish.
Abstract:
Cell signaling regulates a wide range of biological processes including development, homeostasis, and disease. Accessible technologies to precisely manipulate signaling have important applications in basic and translational research. Here, we introduce an optogenetic toolkit comprised of 1) a zebrafish-optimized FGF signaling activator, 2) a single-transcript Nodal signaling activator, and 3) a previously established BMP signaling activator. We thoroughly characterize this suite of tools in zebrafish embryos and show that they provide tunable, light-dependent spatiotemporal control of signaling in vivo. In response to blue light (∼455 nm), receptor kinase domains fused to blue light-dimerizing LOV domains enable robust signaling activation with minimal ectopic activity in the dark or at wavelengths over 495 nm. Optogenetic activation by each tool is pathway-specific and results in increased expression of known target genes. Signaling is activated with rapid on/off kinetics, and activation strength depends on light irradiance. Finally, we demonstrate spatially localized signaling activation with our optimized FGF activator. Together, our results establish this optogenetic toolkit as a potent experimental platform to rapidly, directly, and adjustably activate FGF, BMP, and Nodal signaling in zebrafish embryos.
12.
Emerging roles of transcriptional condensates as temporal signal integrators.
Abstract:
Transcription factors relay information from the external environment to gene regulatory networks that control cell physiology. To confer signalling specificity, robustness and coordination, these signalling networks use temporal communication codes, such as the amplitude, duration or frequency of signals. Although much is known about how temporal information is encoded, a mechanistic understanding of how gene regulatory networks decode signalling dynamics is lacking. Recent advances in our understanding of phase separation of transcriptional condensates provide new biophysical frameworks for both temporal encoding and decoding mechanisms. In this Perspective, we summarize the mechanisms by which transcriptional condensates could enable temporal decoding through signal adaptation, memory and persistence. We further outline methods to probe and manipulate dynamic communication codes of transcription factors and condensates to rationally control gene activation.
13.
Pulsatory response of the BcLOV4 photoreceptor through intramolecular feed-forward regulation.
Abstract:
Biomolecular networks can dynamically encode information, generating time-varying patterns of activity in response to an input. Here we find that dynamic encoding can also be performed by individual proteins. BcLOV4 is an optogenetic protein that uniquely displays pulsatory activation in response to a step input of light, and response dynamics can be shaped by both light and temperature. However, how the BcLOV4 protein generates this step-to-pulse response is not understood. Here we combined live cell imaging and simulations to find that the activity pulse results from an intramolecular incoherent feedforward loop (IFFL) implemented by competitive interactions between protein domains that separately respond to light or temperature. We identified these light- and temperature-sensitive regions and found that they implement the IFFL by competitively caging an activation region. Structural and sequence analysis revealed temperature-responsive regions of BcLOV4 which allowed experimental tuning of activation dynamics and suggested that tuning has also occurred throughout evolution. These findings enabled the generation of more thermostable optogenetic tools and identified a modular thermosensitive domain that endowed thermogenetic control over unrelated proteins. Our findings uncover principles of dynamic and combinatorial signal processing in individual proteins that will fuel development of more sophisticated and compact synthetic systems.
14.
Engineered depalmitoylases enable selective manipulation of protein localization and function.
Abstract:
S-Palmitoylation is a reversible post-translational modification that tunes the localization, stability, and function of an impressive array of proteins including ion channels, G-proteins, and synaptic proteins. Indeed, altered protein palmitoylation is linked to various human diseases including cancers, neurodevelopmental and neurodegenerative diseases. As such, strategies to selectively manipulate protein palmitoylation with enhanced temporal and subcellular precision are sought after to both delineate physiological functions and as potential therapeutics. Here, we develop chemogenetically and optogenetically inducible engineered depalmitoylases to manipulate the palmitoylation status of target proteins. We demonstrate that this strategy is programmable allowing selective depalmitoylation in specific organelles, triggered by cell-signaling events, and of individual protein complexes. Application of this methodology revealed bidirectional tuning of neuronal excitability by distinct depalmitoylases. Overall, this strategy represents a versatile and powerful method for manipulating protein palmitoylation in live cells, providing insights into their regulation in distinct physiological contexts.
15.
Optogenetic control of pheromone gradients and mating behavior in budding yeast.
-
Banderas, A
-
Hofmann, M
-
Cordier, C
-
Le Bec, M
-
Elizondo-Cantú, MC
-
Chiron, L
-
Pouzet, S
-
Lifschytz, Y
-
Ji, W
-
Amir, A
-
Scolari, V
-
Hersen, P
Abstract:
During mating in budding yeast, cells use pheromones to locate each other and fuse. This model system has shaped our current understanding of signal transduction and cell polarization in response to extracellular signals. The cell populations producing extracellular signal landscapes themselves are, however, less well understood, yet crucial for functionally testing quantitative models of cell polarization and for controlling cell behavior through bioengineering approaches. Here we engineered optogenetic control of pheromone landscapes in mating populations of budding yeast, hijacking the mating-pheromone pathway to achieve spatial control of growth, cell morphology, cell-cell fusion, and distance-dependent gene expression in response to light. Using our tool, we were able to spatially control and shape pheromone gradients, allowing the use of a biophysical model to infer the properties of large-scale gradients generated by mating populations in a single, quantitative experimental setup, predicting that the shape of such gradients depends quantitatively on population parameters. Spatial optogenetic control of diffusible signals and their degradation provides a controllable signaling environment for engineering artificial communication and cell-fate systems in gel-embedded cell populations without the need for physical manipulation.
16.
Neighbor cells restrain furrowing during Xenopus epithelial cytokinesis.
Abstract:
Cytokinesis challenges epithelial tissue homeostasis by generating forces that pull on neighboring cells. Junction reinforcement at the furrow in Xenopus epithelia regulates the speed of furrowing, suggesting that cytokinesis is subject to resistive forces from epithelial neighbors. We show that contractility factors accumulate near the furrow in neighboring cells, and increasing neighbor cell stiffness slows furrowing. Optogenetically increasing contractility in one or both neighbor cells slows furrowing or induces cytokinetic failure. Uncoupling mechanotransduction between dividing cells and their neighbors increases the furrow ingression rate, alters topological cell packing following cytokinesis, and impairs barrier function at the furrow. Computational modeling validates our findings and provides additional insights about epithelial mechanics during cytokinesis. We conclude that forces from the cytokinetic array must be carefully balanced with restraining forces generated by neighbor cells to regulate the speed and success of cytokinesis and maintain epithelial homeostasis.
17.
Application of the Magnet-Cre optogenetic system in the chicken model.
Abstract:
Chickens serve as an excellent model organism for developmental biology, offering unique opportunities for precise spatiotemporal access to embryos within eggs. Optogenes are light-activated proteins that regulate gene expression, offering a non-invasive method to activate genes at specific locations and developmental stages, advancing developmental biology research. This study employed the Magnet-Cre optogenetic system to control gene expression in developing chicken embryos. Magnet-Cre consists of two light-sensitive protein domains that dimerize upon light activation, each attached to an inactive half of the Cre recombinase enzyme, which becomes active upon dimerization.
We developed an all-in-one plasmid containing a green fluorescent protein marker, the Magnet-Cre system, and a light-activated red fluorescent protein gene. This plasmid was electroporated into the neural tube of Hamburger and Hamilton (H&H) stage 14 chicken embryos. Embryo samples were cleared using the CUBIC protocol and imaged with a light sheet microscope to analyze optogenetic activity via red-fluorescent cells. We established a pipeline for Magnet-Cre activation in chicken embryos, demonstrating that a single 3-min exposure to blue light following incubation at 28 °C was sufficient to trigger gene activity within the neural tube, with increased activity upon additional light exposure. Finally, we showed a spatiotemporal control of gene activity using a localized laser light induction.
This research lays the groundwork for further advancements in avian developmental biology and poultry research, enabling spatiotemporal control of genes in both embryos and transgenic chickens.
18.
Recent Developments in the Optical Control of Adrenergic Signaling.
Abstract:
Adrenoceptors (ARs) play a vital role in various physiological processes and are key therapeutic targets. The advent of optical control techniques, including optogenetics and photopharmacology, offers the potential to modulate AR signaling with precise temporal and spatial resolution. In this review, we summarize the latest advancements in the optical control of AR signaling, encompassing optogenetics, photocaged compounds, and photoswitchable compounds. We also discuss the limitations of current tools and provide an outlook on the next generation of optogenetic and photopharmacological tools. These emerging optical technologies not only enhance our understanding of AR signaling but also pave the way for potential therapeutic developments.
19.
Optogenetic manipulation of nuclear Dorsal reveals temporal requirements and consequences for transcription.
Abstract:
Morphogen gradients convey essential spatial information during tissue patterning. Although the concentration and timing of morphogen exposure are both crucial, how cells interpret these graded inputs remains challenging to address. We employed an optogenetic system to acutely and reversibly modulate the nuclear concentration of the morphogen Dorsal (DL), homolog of NF-κB, which orchestrates dorsoventral patterning in the Drosophila embryo. By controlling DL nuclear concentration while simultaneously recording target gene outputs in real time, we identified a critical window for DL action that is required to instruct patterning and characterized the resulting effect on spatiotemporal transcription of target genes in terms of timing, coordination and bursting. We found that a transient decrease in nuclear DL levels at nuclear cycle 13 leads to reduced expression of the mesoderm-associated gene snail (sna) and partial derepression of the neurogenic ectoderm-associated target short gastrulation (sog) in ventral regions. Surprisingly, the mispatterning elicited by this transient change in DL was detectable at the level of single-cell transcriptional bursting kinetics, specifically affecting long inter-burst durations. Our approach of using temporally resolved and reversible modulation of a morphogen in vivo, combined with mathematical modeling, establishes a framework for understanding the stimulus-response relationships that govern embryonic patterning.
20.
A TRPV4-dependent calcium signaling axis governs lamellipodial actin architecture to promote cell migration.
-
Iu, E
-
Bogatch, A
-
Deng, W
-
Humphries, JD
-
Yang, C
-
Valencia, FR
-
Li, C
-
McCulloch, CA
-
Tanentzapf, G
-
Svitkina, TM
-
Humphries, MJ
-
Plotnikov, SV
Abstract:
Cell migration is crucial for development and tissue homeostasis, while its dysregulation leads to severe pathologies. Cell migration is driven by the extension of actin-based lamellipodia protrusions, powered by actin polymerization, which is tightly regulated by signaling pathways, including Rho GTPases and Ca2+ signaling. While the importance of Ca2+ signaling in lamellipodia protrusions has been established, the molecular mechanisms linking Ca2+ to lamellipodia assembly are unknown. Here, we identify a novel Ca2+ signaling axis involving the mechano-gated channel TRPV4, which regulates lamellipodia protrusions in various cell types. Using Ca2+ and FRET imaging, we demonstrate that TRPV4-mediated Ca2+ influx upregulates RhoA activity within lamellipodia, which then facilitates formin-mediated actin assembly. Mechanistically, we identify CaMKII and TEM4 as key mediators relaying the TRPV4-mediated Ca2+ signal to RhoA. These data define a molecular pathway by which Ca2+ influx regulates small GTPase activity within a specific cellular domain – lamellipodia - and demonstrate the critical role in organizing the actin machinery and promoting cell migration in diverse biological contexts.
21.
Ferroptosis spreads to neighboring cells via plasma membrane contacts.
Abstract:
Ferroptosis is a lytic, iron-dependent form of regulated cell death characterized by excessive lipid peroxidation and associated with necrosis spread in diseased tissues through unknown mechanisms. Using a novel optogenetic system for light-driven ferroptosis induction via degradation of the anti-ferroptotic protein GPX4, we show that lipid peroxidation and ferroptotic death can spread to neighboring cells through their closely adjacent plasma membranes. Ferroptosis propagation is dependent on cell distance and completely abolished by disruption of α-catenin-dependent intercellular contacts or by chelation of extracellular iron. Remarkably, bridging cells with a lipid bilayer or increasing contacts between neighboring cells enhances ferroptosis spread. Reconstitution of iron-dependent spread of lipid peroxidation between pure lipid, contacting liposomes provides evidence for the physicochemical mechanism involved. Our findings support a model in which iron-dependent lipid peroxidation propagates across proximal plasma membranes of neighboring cells, thereby promoting the transmission of ferroptotic cell death with consequences for pathological tissue necrosis spread.
22.
Inward transport of organelles drives outward migration of the spindle during C. elegans meiosis.
-
Aquino, AP
-
Li, W
-
Lele, A
-
Lazureanu, D
-
Hampton, MF
-
Do, RM
-
Lafrades, MC
-
Barajas, MG
-
Batres, AA
-
McNally, FJ
Abstract:
Cortical positioning of the meiotic spindle within an oocyte is required to expel chromosomes into polar bodies to generate a zygote with the correct number of chromosomes. In C. elegans, yolk granules and mitochondria are packed inward, away from the cortex, while the spindle moves outward, both in a kinesin-dependent manner. The kinesin-dependent inward packing of yolk granules suggests the existence of microtubules with minus ends at the cortex and plus ends extending inward, making it unclear how kinesin moves the spindle outward. We hypothesize that the inward packing of organelles might indirectly force the spindle outward by volume exclusion. To test this hypothesis, we generate a strain in which the only kinesin consists of motor domains with no cargo-binding tail optogenetically attached to mitochondria. This mitochondria-only kinesin packs mitochondria into a tight ball and efficiently moves the meiotic spindle to the cortex, supporting the volume exclusion hypothesis.
23.
An improved FLARE system for recording and manipulating neuronal activity.
Abstract:
To address the need for methods for tagging and manipulating neuronal ensembles underlying specific behaviors, we present an improved version of FLARE, termed cytoFLARE (cytosol-expressed FLARE). cytoFLARE incorporates cytosolic tethering of a transcription factor and expression of a more sensitive pair of calcium-sensing domains. We show that cytoFLARE captures more calcium- and light-dependent signals in HEK293T cells and higher signal-to-background ratios in neuronal cultures. We further establish cytoFLARE transgenic Drosophila models and apply cytoFLARE to label activated neurons upon sensory or optogenetic stimulation within a defined time window. Notably, through the cytoFLARE-driven expression of optogenetic actuators, we successfully reactivated and inhibited neurons involved in the larval nociceptive system. Our findings demonstrate the characterization and application of time-gated calcium integrators for both recording and manipulating neuronal activity in Drosophila larvae.
24.
Light-induced expression of gRNA allows for optogenetic gene editing of T lymphocytes in vivo.
Abstract:
There is currently a lack of tools capable of perturbing genes in both a precise and a spatiotemporal fashion. The flexibility of CRISPR (clustered regularly interspaced short palindromic repeats), coupled with light's unparalleled spatiotemporal resolution deliverable from a controllable source, makes optogenetic CRISPR a well-suited solution for precise spatiotemporal gene perturbations. Here, we present a new optogenetic CRISPR tool (Blue Light-inducible Universal VPR-Improved Production of RGRs, BLU-VIPR) that diverges from prevailing split-Cas design strategies and instead focuses on optogenetic regulation of guide RNA (gRNA) production. We engineered BLU-VIPR around a new potent blue-light activated transcription factor (VPR-EL222) and ribozyme-flanked gRNA. The BLU-VIPR design is genetically encoded and ensures precise excision of multiple gRNAs from a single messenger RNA transcript. This simplified spatiotemporal gene perturbation and allowed for several types of optogenetic CRISPR, including indels, CRISPRa, and base editing. BLU-VIPR also worked in vivo with cells previously intractable to optogenetic gene editing, achieving optogenetic gene editing in T lymphocytes in vivo.
25.
Optogenetic tools for inducing organelle membrane rupture.
Abstract:
Disintegration of organelle membranes induces various cellular responses and has pathological consequences, including autoinflammatory diseases and neurodegeneration. Establishing methods to induce membrane rupture of specific organelles is essential to analyze the downstream effects of membrane rupture; however, the spatiotemporal induction of organelle membrane rupture remains challenging. Here, we develop a series of optogenetic tools to induce organelle membrane rupture by using engineered Bcl-2-associated X protein (BAX), which primarily functions to form membrane pores in the outer mitochondrial membrane (OMM) during apoptosis. When BAX is forced to target mitochondria, lysosomes, or the endoplasmic reticulum (ER) by replacing its C-terminal transmembrane domain (TMD) with organelle-targeting sequences, the BAX mutants rupture their targeted membranes. To regulate the activity of organelle-targeted BAX, the photosensitive light-oxygen-voltage-sensing 2 (LOV2) domain is fused to the N-terminus of BAX. The resulting LOV2-BAX fusion protein exhibits blue light-dependent membrane-rupture activity on various organelles, including mitochondria, the ER, and lysosomes. Thus, LOV2-BAX enables spatiotemporal induction of membrane rupture across a broad range of organelles, expanding research opportunities on the consequences of organelle membrane disruption.