Qr: switch:"CRY2/CIB1"
Showing 526 - 534 of 534 results
526.
Lights on and action! Controlling microbial gene expression by light.
Abstract:
Light-mediated control of gene expression and thus of any protein function and metabolic process in living microbes is a rapidly developing field of research in the areas of functional genomics, systems biology, and biotechnology. The unique physical properties of the environmental factor light allow for an independent photocontrol of various microbial processes in a noninvasive and spatiotemporal fashion. This mini review describes recently developed strategies to generate photo-sensitive expression systems in bacteria and yeast. Naturally occurring and artificial photoswitches consisting of light-sensitive input domains derived from different photoreceptors and regulatory output domains are presented and individual properties of light-controlled expression systems are discussed.
527.
Rapid blue-light-mediated induction of protein interactions in living cells.
Abstract:
Dimerizers allowing inducible control of protein-protein interactions are powerful tools for manipulating biological processes. Here we describe genetically encoded light-inducible protein-interaction modules based on Arabidopsis thaliana cryptochrome 2 and CIB1 that require no exogenous ligands and dimerize on blue-light exposure with subsecond time resolution and subcellular spatial resolution. We demonstrate the utility of this system by inducing protein translocation, transcription and Cre recombinase-mediated DNA recombination using light.
528.
The Cryptochrome Blue Light Receptors.
Abstract:
Cryptochromes are photolyase-like blue light receptors originally discovered in Arabidopsis but later found in other
plants, microbes, and animals. Arabidopsis has two cryptochromes, CRY1 and CRY2, which mediate primarily blue light
inhibition of hypocotyl elongation and photoperiodic control of fl oral initiation, respectively. In addition, cryptochromes
also regulate over a dozen other light responses, including circadian rhythms, tropic growth, stomata opening, guard
cell development, root development, bacterial and viral pathogen responses, abiotic stress responses, cell cycles, programmed
cell death, apical dominance, fruit and ovule development, seed dormancy, and magnetoreception. Cryptochromes
have two domains, the N-terminal PHR (Photolyase-Homologous Region) domain that bind the chromophore
FAD (flavin adenine dinucleotide), and the CCE (CRY C-terminal Extension) domain that appears intrinsically unstructured
but critical to the function and regulation of cryptochromes. Most cryptochromes accumulate in the nucleus,
and they undergo blue light-dependent phosphorylation or ubiquitination. It is hypothesized that photons excite electrons
of the fl avin molecule, resulting in redox reaction or circular electron shuttle and conformational changes of the
photoreceptors. The photoexcited cryptochrome are phosphorylated to adopt an open conformation, which interacts
with signaling partner proteins to alter gene expression at both transcriptional and posttranslational levels and consequently
the metabolic and developmental programs of plants.
529.
Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis.
Abstract:
Cryptochromes (CRY) are photolyase-like blue-light receptors that mediate light responses in plants and animals. How plant cryptochromes act in response to blue light is not well understood. We report here the identification and characterization of the Arabidopsis CIB1 (cryptochrome-interacting basic-helix-loop-helix) protein. CIB1 interacts with CRY2 (cryptochrome 2) in a blue light-specific manner in yeast and Arabidopsis cells, and it acts together with additional CIB1-related proteins to promote CRY2-dependent floral initiation. CIB1 binds to G box (CACGTG) in vitro with a higher affinity than its interaction with other E-box elements (CANNTG). However, CIB1 stimulates FT messenger RNA expression, and it interacts with chromatin DNA of the FT gene that possesses various E-box elements except G box. We propose that the blue light-dependent interaction of cryptochrome(s) with CIB1 and CIB1-related proteins represents an early photoreceptor signaling mechanism in plants.
530.
Traumatic occlusion of internal carotid artery in an infant.
Abstract:
A case of an 11-months-old girl with traumatic occlusion of supraclinoid portion of internal carotid artery is reported. The patient died about 22 hours after the craniocerebral trauma.
531.
A comparison of the substrate specificities of endo-beta-N-acetylglucosaminidases from Streptomyces griseus and Diplococcus Pneumoniae.
Abstract:
Abstract not available.
532.
Delineation of the intimate details of the backbone conformation of pyridine nucleotide coenzymes in aqueous solution.
Abstract:
Abstract not available.
533.
Pharmacological properties of new neuroleptic compounds.
Abstract:
RMI 61 140, RMI 61 144 and RMI 61 280 are newly synthetized N-[8-R-dibenzo(b,f)oxepin-10-yl]-N'-methyl-piperazine-maleates which show interesting psychopharmacologic effects. This work contains the results of a study performed with these three compounds, in order to demonstrate their neuropsycholeptic activity in comparison with chloropromazine (CPZ) and chlordiazepoxide (CPD). The inhibition of motility observed in mice shows that the compounds reduce the normal spontaneous motility as well as the muscle tone. The central-depressant activity is evidenced by increased barbiturate-induced sleep and a remarkable eyelid ptosis can also be observed. Our compounds do not show any activity on electroshock just as do CPZ and CPD. As to the antipsychotic outline, our compounds show strong reduction of lethality due to amphetamine in grouped mice and a strong antiapomorphine activity. They show also an antiaggressive effect and an inhibitory activity on avoidance behaviour much stronger than CPZ. We have also found extrapyramidal effects, as catalepsy, common to many tranquillizers of the kind of the standards used by us. As for vegetative phenomena, the compounds show hypotensive dose related action ranging from moderate to strong, probably due to an a-receptor inhibition. Adrenolytic activity against lethal doses of adrenaline, antiserotonin and antihistaminic effects, as well as other actions (hypothermia, analgesia, etc.) confirm that RMI 61 140, RMI 61 144 and RMI 61 280 are endowed with pharmacologic properties similar and more potent than those of CPZ. Studies on the metabolism of brain catecholamines show that they are similar to CPZ, although with less effect on dopamine level.
534.
Editorial: "Old lamps for new".
Abstract:
Abstract not available.