STAGING INSTANCE | Import Mastertable

Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: switch:"VVD"
Showing 76 - 100 of 216 results
76.

The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters.

blue green near-infrared red UV violet BLUF domains Cryptochromes LOV domains Phytochromes UV receptors Review
Chem Rev, 20 Oct 2021 DOI: 10.1021/acs.chemrev.1c00194 Link to full text
Abstract: This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
77.

Optogenetic strategies for the control of gene expression in yeasts.

blue green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes LOV domains Phytochromes UV receptors Review
Biotechnol Adv, 28 Sep 2021 DOI: 10.1016/j.biotechadv.2021.107839 Link to full text
Abstract: Optogenetics involves the use of light to control cellular functions and has become increasingly popular in various areas of research, especially in the precise control of gene expression. While this technology is already well established in neurobiology and basic research, its use in bioprocess development is still emerging. Some optogenetic switches have been implemented in yeasts for different purposes, taking advantage of a wide repertoire of biological parts and relatively easy genetic manipulation. In this review, we cover the current strategies used for the construction of yeast strains to be used in optogenetically controlled protein or metabolite production, as well as the operational aspects to be considered for the scale-up of this type of process. Finally, we discuss the main applications of optogenetic switches in yeast systems and highlight the main advantages and challenges of bioprocess development considering future directions for this field.
78.

Applications of Upconversion Nanoparticles in Cellular Optogenetics.

blue cyan green Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Review
Acta Biomater, 27 Aug 2021 DOI: 10.1016/j.actbio.2021.08.035 Link to full text
Abstract: Upconversion-mediated optogenetics is an emerging powerful technique to remotely control and manipulate the deep-tissue protein functions and signaling pathway activation. This technique uses lanthanide upconversion nanoparticles (UCNPs) as light transducers and through near-infrared light to indirectly activate the traditional optogenetic proteins. With the merits of high spatiotemporal resolution and minimal invasiveness, this technique enables cell-type specific manipulation of cellular activities in deep tissues as well as in living animals. In this review, we introduce the latest development of optogenetic modules and UCNPs, with emphasis on the integration of UCNPs with cellular optogenetics and their biomedical applications on the control of neural/brain activity, cancer therapy and cardiac optogenetics in vivo. Furthermore, we analyze the current developed strategies to optimize and advance the upconversion-mediated optogenetics and discuss the remaining challenges of its further applications in biomedical study and clinical translational research. STATEMENT OF SIGNIFICANCE: Optogenetics harnesses photoactivatable proteins to optically stimulate and control intracellular activities. UCNPs-mediated NIR-activatable optogenetics uses lanthanide upconversion nanoparticles (UCNPs) as light transducers and utilizes near-infrared (NIR) light to indirectly activate the traditional optogenetic proteins. The integration of UCNPs with cellular optogenetics has showed great promise in biomedical applications in regulating neural/brain activity, cancer therapy and cardiac optogenetics in vivo. The evolution and optimization of functional UCNPs and the discovery and engineering of novel optogenetic modules would both contribute to the advance of such unique hybrid technology, which may lead to discoveries in biomedical research and provide new treatments for human diseases.
79.

A guide to the optogenetic regulation of endogenous molecules.

blue cyan near-infrared Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Nat Methods, 26 Aug 2021 DOI: 10.1038/s41592-021-01240-1 Link to full text
Abstract: Genetically encoded tools for the regulation of endogenous molecules (RNA, DNA elements and protein) are needed to study and control biological processes with minimal interference caused by protein overexpression and overactivation of signaling pathways. Here we focus on light-controlled optogenetic tools (OTs) that allow spatiotemporally precise regulation of gene expression and protein function. To control endogenous molecules, OTs combine light-sensing modules from natural photoreceptors with specific protein or nucleic acid binders. We discuss OT designs and group OTs according to the principles of their regulation. We outline characteristics of OT performance, discuss considerations for their use in vivo and review available OTs and their applications in cells and in vivo. Finally, we provide a brief outlook on the development of OTs.
80.

Modular and Molecular Optimization of a LOV (Light-Oxygen-Voltage)-Based Optogenetic Switch in Yeast.

blue NcWC1-LOV VVD S. cerevisiae Transgene expression
Int J Mol Sci, 9 Aug 2021 DOI: 10.3390/ijms22168538 Link to full text
Abstract: Optogenetic switches allow light-controlled gene expression with reversible and spatiotemporal resolution. In Saccharomyces cerevisiae, optogenetic tools hold great potential for a variety of metabolic engineering and biotechnology applications. In this work, we report on the modular optimization of the fungal light-oxygen-voltage (FUN-LOV) system, an optogenetic switch based on photoreceptors from the fungus Neurospora crassa. We also describe new switch variants obtained by replacing the Gal4 DNA-binding domain (DBD) of FUN-LOV with nine different DBDs from yeast transcription factors of the zinc cluster family. Among the tested modules, the variant carrying the Hap1p DBD, which we call "HAP-LOV", displayed higher levels of luciferase expression upon induction compared to FUN-LOV. Further, the combination of the Hap1p DBD with either p65 or VP16 activation domains also resulted in higher levels of reporter expression compared to the original switch. Finally, we assessed the effects of the plasmid copy number and promoter strength controlling the expression of the FUN-LOV and HAP-LOV components, and observed that when low-copy plasmids and strong promoters were used, a stronger response was achieved in both systems. Altogether, we describe a new set of blue-light optogenetic switches carrying different protein modules, which expands the available suite of optogenetic tools in yeast and can additionally be applied to other systems.
81.

Induced proximity tools for precise manipulation of lipid signaling.

blue Cryptochromes LOV domains Review
Curr Opin Chem Biol, 22 Jul 2021 DOI: 10.1016/j.cbpa.2021.06.005 Link to full text
Abstract: Lipids are highly dynamic molecules that, due to their hydrophobicity, are spatially confined to membrane environments. From these locations, certain privileged lipids serve as signaling molecules. For understanding the biological functions of subcellular pools of signaling lipids, induced proximity tools have been invaluable. These methods involve controlled heterodimerization, by either small-molecule or light triggers, of functional proteins. In the arena of lipid signaling, induced proximity tools can recruit lipid-metabolizing enzymes to manipulate lipid signaling and create artificial tethers between organelle membranes to control lipid trafficking pathways at membrane contact sites. Here, we review recent advances in methodology development and biological application of chemical-induced and light-induced proximity tools for manipulating lipid metabolism, trafficking, and signaling.
82.

Clinical applicability of optogenetic gene regulation.

blue green near-infrared red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Biotechnol Bioeng, 20 Jul 2021 DOI: 10.1002/bit.27895 Link to full text
Abstract: The field of optogenetics is rapidly growing in relevance and number of developed tools. Amongst other things, the optogenetic repertoire includes light-responsive ion channels and methods for gene regulation. This review will be confined to the optogenetic control of gene expression in mammalian cells as suitable models for clinical applications. Here optogenetic gene regulation might offer an excellent method for spatially and timely regulated gene and protein expression in cell therapeutic approaches. Well-known systems for gene regulation, such as the LOV-, CRY2/CIB-, PhyB/PIF-systems, as well as other, in mammalian cells not yet fully established systems will be described. Advantages and disadvantages with regard to clinical applications are outlined in detail. Among the many unanswered questions concerning the application of optogenetics, we discuss items such as the use of exogenous chromophores and their effects on the biology of the cells and methods for a gentle, but effective gene transfection method for optogenetic tools for in vivo applications. This article is protected by copyright. All rights reserved.
83.

Reliably Engineering and Controlling Stable Optogenetic Gene Circuits in Mammalian Cells.

blue AsLOV2 VVD HEK293
J Vis Exp, 6 Jul 2021 DOI: 10.3791/62109 Link to full text
Abstract: Reliable gene expression control in mammalian cells requires tools with high fold change, low noise, and determined input-to-output transfer functions, regardless of the method used. Toward this goal, optogenetic gene expression systems have gained much attention over the past decade for spatiotemporal control of protein levels in mammalian cells. However, most existing circuits controlling light-induced gene expression vary in architecture, are expressed from plasmids, and utilize variable optogenetic equipment, creating a need to explore characterization and standardization of optogenetic components in stable cell lines. Here, the study provides an experimental pipeline of reliable gene circuit construction, integration, and characterization for controlling light-inducible gene expression in mammalian cells, using a negative feedback optogenetic circuit as a case example. The protocols also illustrate how standardizing optogenetic equipment and light regimes can reliably reveal gene circuit features such as gene expression noise and protein expression magnitude. Lastly, this paper may be of use for laboratories unfamiliar with optogenetics who wish to adopt such technology. The pipeline described here should apply for other optogenetic circuits in mammalian cells, allowing for more reliable, detailed characterization and control of gene expression at the transcriptional, proteomic, and ultimately phenotypic level in mammalian cells.
84.

A Light-Oxygen-Voltage Receptor Integrates Light and Temperature.

blue PtAU1-LOV RsLOV VfAU1-LOV VVD E. coli HEK293T
J Mol Biol, 17 Jun 2021 DOI: 10.1016/j.jmb.2021.167107 Link to full text
Abstract: Sensory photoreceptors enable organisms to adjust their physiology, behavior, and development in response to light, generally with spatiotemporal acuity and reversibility. These traits underlie the use of photoreceptors as genetically encoded actuators to alter by light the state and properties of heterologous organisms. Subsumed as optogenetics, pertinent approaches enable regulating diverse cellular processes, not least gene expression. Here, we controlled the widely used Tet repressor by coupling to light-oxygen-voltage (LOV) modules that either homodimerize or dissociate under blue light. Repression could thus be elevated or relieved, and consequently protein expression was modulated by light. Strikingly, the homodimeric RsLOV module from Rhodobacter sphaeroides not only dissociated under light but intrinsically reacted to temperature. The limited light responses of wild-type RsLOV at 37 °C were enhanced in two variants that exhibited closely similar photochemistry and structure. One variant improved the weak homodimerization affinity of 40 µM by two-fold and thus also bestowed light sensitivity on a receptor tyrosine kinase. Certain photoreceptors, exemplified by RsLOV, can evidently moonlight as temperature sensors which immediately bears on their application in optogenetics and biotechnology. Properly accounted for, the temperature sensitivity can be leveraged for the construction of signal-responsive cellular circuits.
85.

Transmission of light signals from the light-oxygen-voltage core via the hydrophobic region of the β-sheet surface in aureochrome-1.

blue LOV domains Background
Sci Rep, 7 Jun 2021 DOI: 10.1038/s41598-021-91497-5 Link to full text
Abstract: Light-Oxygen-Voltage (LOV) domains are responsible for detecting blue light (BL) and regulating the activities of effector domains in various organisms. Photozipper (PZ), an N-terminally truncated aureochrome-1 protein, contains a LOV domain and a basic leucin zipper (bZIP) domain and plays a role as a light-activatable transcription factor. PZ is monomeric in the dark state and undergoes non-covalent dimerization upon illumination with BL, subsequently increasing its affinity for the target DNA. To clarify the molecular mechanism of aureochromes, we prepared site-directed mutants of PZ and performed quantitative analyses in the dark and light states. Although the amino acid substitutions in the hinge region between the LOV core and A'α helix had minor effects on the dimerization and DNA-binding properties of PZ, the substitutions in the β-sheet region of the LOV core and in the A'α helix significantly affected these properties. We found that light signals are transmitted from the LOV core to the effector bZIP domain via the hydrophobic residues on the β-sheet. The light-induced conformational change possibly deforms the hydrophobic regions of the LOV core and induces the detachment of the A'α helix to expose the dimerization surface, likely activating the bZIP domain in a light-dependent manner.
86.

Synthetic biology as driver for the biologization of materials sciences.

blue cyan red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Mater Today Bio, 26 May 2021 DOI: 10.1016/j.mtbio.2021.100115 Link to full text
Abstract: Materials in nature have fascinating properties that serve as a continuous source of inspiration for materials scientists. Accordingly, bio-mimetic and bio-inspired approaches have yielded remarkable structural and functional materials for a plethora of applications. Despite these advances, many properties of natural materials remain challenging or yet impossible to incorporate into synthetic materials. Natural materials are produced by living cells, which sense and process environmental cues and conditions by means of signaling and genetic programs, thereby controlling the biosynthesis, remodeling, functionalization, or degradation of the natural material. In this context, synthetic biology offers unique opportunities in materials sciences by providing direct access to the rational engineering of how a cell senses and processes environmental information and translates them into the properties and functions of materials. Here, we identify and review two main directions by which synthetic biology can be harnessed to provide new impulses for the biologization of the materials sciences: first, the engineering of cells to produce precursors for the subsequent synthesis of materials. This includes materials that are otherwise produced from petrochemical resources, but also materials where the bio-produced substances contribute unique properties and functions not existing in traditional materials. Second, engineered living materials that are formed or assembled by cells or in which cells contribute specific functions while remaining an integral part of the living composite material. We finally provide a perspective of future scientific directions of this promising area of research and discuss science policy that would be required to support research and development in this field.
87.

Optogenetic Approaches for the Spatiotemporal Control of Signal Transduction Pathways.

blue cyan green red Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Int J Mol Sci, 18 May 2021 DOI: 10.3390/ijms22105300 Link to full text
Abstract: Biological signals are sensed by their respective receptors and are transduced and processed by a sophisticated intracellular signaling network leading to a signal-specific cellular response. Thereby, the response to the signal depends on the strength, the frequency, and the duration of the stimulus as well as on the subcellular signal progression. Optogenetic tools are based on genetically encoded light-sensing proteins facilitating the precise spatiotemporal control of signal transduction pathways and cell fate decisions in the absence of natural ligands. In this review, we provide an overview of optogenetic approaches connecting light-regulated protein-protein interaction or caging/uncaging events with steering the function of signaling proteins. We briefly discuss the most common optogenetic switches and their mode of action. The main part deals with the engineering and application of optogenetic tools for the control of transmembrane receptors including receptor tyrosine kinases, the T cell receptor and integrins, and their effector proteins. We also address the hallmarks of optogenetics, the spatial and temporal control of signaling events.
88.

The Rise of Molecular Optogenetics.

blue green Cobalamin-binding domains Cryptochromes LOV domains Review
Adv Biol (Weinh), May 2021 DOI: 10.1002/adbi.202100776 Link to full text
Abstract: Abstract not available.
89.

Engineering AraC to make it responsive to light instead of arabinose.

blue VVD E. coli Transgene expression
Nat Chem Biol, 26 Apr 2021 DOI: 10.1038/s41589-021-00787-6 Link to full text
Abstract: The L-arabinose-responsive AraC and its cognate PBAD promoter underlie one of the most often used chemically inducible prokaryotic gene expression systems in microbiology and synthetic biology. Here, we change the sensing capability of AraC from L-arabinose to blue light, making its dimerization and the resulting PBAD activation light-inducible. We engineer an entire family of blue light-inducible AraC dimers in Escherichia coli (BLADE) to control gene expression in space and time. We show that BLADE can be used with pre-existing L-arabinose-responsive plasmids and strains, enabling optogenetic experiments without the need to clone. Furthermore, we apply BLADE to control, with light, the catabolism of L-arabinose, thus externally steering bacterial growth with a simple transformation step. Our work establishes BLADE as a highly practical and effective optogenetic tool with plug-and-play functionality-features that we hope will accelerate the broader adoption of optogenetics and the realization of its vast potential in microbiology, synthetic biology and biotechnology.
90.

Lighting the way: Recent insights into the structure and regulation of phototropin blue light receptors.

blue LOV domains Review
J Biol Chem, 26 Mar 2021 DOI: 10.1016/j.jbc.2021.100594 Link to full text
Abstract: The phototropins (phots) are light-activated kinases that are critical for plant physiology and the many diverse optogenetic tools that they have inspired. Phototropins combine two blue light sensing Light-Oxygen-Voltage (LOV) domains (LOV1 and LOV2) and a C-terminal serine/threonine kinase domain, using the LOV domains to control the catalytic activity of the kinase. While much is known about the structure and photochemistry of the light-perceiving LOV domains, particularly in how activation of the LOV2 domain triggers the unfolding of alpha helices that communicate the light signal to the kinase domain, many questions about phot structure and mechanism remain. Recent studies have made progress addressing these questions by utilizing small angle X-ray scattering (SAXS) and other biophysical approaches to study multidomain phots from Chlamydomonas and Arabidopsis, leading to models where the domains have an extended linear arrangement, with the activating LOV2 domain contacting the kinase domain N-lobe. We discuss this and other advances which have improved structural and mechanistic understanding of phot regulation in this review, along with the challenges that will have to be overcome to obtain high-resolution structural information on these exciting photoreceptors. Such information will be essential to advancing fundamental understanding of plant physiology while enabling engineering efforts at both the whole plant and molecular levels.
91.

Light-induced local gene expression in primary chick cell culture system.

blue VVD primary chick limb mesenchyme cells Transgene expression
Dev Growth Differ, 18 Mar 2021 DOI: 10.1111/dgd.12721 Link to full text
Abstract: The ability to manipulate gene expression at a specific region in a tissue or cell culture system is critical for analysis of target gene function. For chick embryos/cells, several gene introduction/induction methods have been established such as those involving retrovirus, electroporation, sonoporation, and lipofection. However, these methods have limitations in the accurate induction of localized gene expression. Here we demonstrate the effective application of a recently developed light-dependent gene expression induction system (LightOn system) using the Neurospora crassa photoreceptor Vivid fused with a Gal4 DNA binding domain and p65 activation domain (GAVPO) that alters its activity in response to light stimulus in a primary chicken cell culture system. We show that the gene expression level and induction specificity in this system are strongly dependent on the light irradiation conditions. Especially, the irradiation interval is an important parameter for modulating gene expression; for shorter time intervals, higher induction specificity can be achieved. Further, by adjusting light irradiation conditions, the expression level in primary chicken cells can be regulated in a multiple step manner, in contrast to the binary expression seen for gene disruption or introduction (i.e., null or overexpression). This result indicates that the light-dependent expression control method can be a useful technique in chick models to examine how gene funtion is affected by gradual changes in gene expression levels. We applied this light-induction system to regulate Sox9 expression in cultures of chick limb mesenchyme cells and showed that induced SOX9 protein could modulate expression of downstream genes.
92.

Signaling, Deconstructed: Using Optogenetics to Dissect and Direct Information Flow in Biological Systems.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Annu Rev Biomed Eng, 15 Mar 2021 DOI: 10.1146/annurev-bioeng-083120-111648 Link to full text
Abstract: Cells receive enormous amounts of information from their environment. How they act on this information-by migrating, expressing genes, or relaying signals to other cells-comprises much of the regulatory and self-organizational complexity found across biology. The "parts list" involved in cell signaling is generally well established, but how do these parts work together to decode signals and produce appropriate responses? This fundamental question is increasingly being addressed with optogenetic tools: light-sensitive proteins that enable biologists to manipulate the interaction, localization, and activity state of proteins with high spatial and temporal precision. In this review, we summarize how optogenetics is being used in the pursuit of an answer to this question, outlining the current suite of optogenetic tools available to the researcher and calling attention to studies that increase our understanding of and improve our ability to engineer biology. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 23 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
93.

Strategies for site-specific recombination with high efficiency and precise spatiotemporal resolution.

blue near-infrared red UV Cryptochromes LOV domains Phytochromes UV receptors Review
J Biol Chem, 4 Mar 2021 DOI: 10.1016/j.jbc.2021.100509 Link to full text
Abstract: Site-specific recombinases (SSRs) are invaluable genome engineering tools that have enormously boosted our understanding of gene functions and cell lineage relationships in developmental biology, stem cell biology, regenerative medicine, and multiple diseases. However, the ever-increasing complexity of biomedical research requires the development of novel site-specific genetic recombination technologies that can manipulate genomic DNA with high efficiency and fine spatiotemporal control. Here, we review the latest innovative strategies of the commonly used Cre-loxP recombination system and its combinatorial strategies with other SSR systems. We also highlight recent progress with a focus on the new generation of chemical- and light-inducible genetic systems and discuss the merits and limitations of each new and established system. Finally, we provide the future perspectives of combining various recombination systems or improving well-established site-specific genetic tools to achieve more efficient and precise spatiotemporal genetic manipulation.
94.

Synthetic Biological Approaches for Optogenetics and Tools for Transcriptional Light‐Control in Bacteria.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Adv Biol, 9 Feb 2021 DOI: 10.1002/adbi.202000256 Link to full text
Abstract: Light has become established as a tool not only to visualize and investigate but also to steer biological systems. This review starts by discussing the unique features that make light such an effective control input in biology. It then gives an overview of how light‐control came to progress, starting with photoactivatable compounds and leading up to current genetic implementations using optogenetic approaches. The review then zooms in on optogenetics, focusing on photosensitive proteins, which form the basis for optogenetic engineering using synthetic biological approaches. As the regulation of transcription provides a highly versatile means for steering diverse biological functions, the focus of this review then shifts to transcriptional light regulators, which are presented in the biotechnologically highly relevant model organism Escherichia coli.
95.

A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice.

blue CRY2/CIB1 LOVTRAP VVD A549 Cos-7 HEK293 HEK293T HeLa mouse in vivo NCI-H1299 PC-3 U-87 MG Transgene expression
Nat Commun, 27 Jan 2021 DOI: 10.1038/s41467-021-20913-1 Link to full text
Abstract: Pulsing cellular dynamics in genetic circuits have been shown to provide critical capabilities to cells in stress response, signaling and development. Despite the fascinating discoveries made in the past few years, the mechanisms and functional capabilities of most pulsing systems remain unclear, and one of the critical challenges is the lack of a technology that allows pulsatile regulation of transgene expression both in vitro and in vivo. Here, we describe the development of a synthetic BRET-based transgene expression (LuminON) system based on a luminescent transcription factor, termed luminGAVPO, by fusing NanoLuc luciferase to the light-switchable transcription factor GAVPO. luminGAVPO allows pulsatile and quantitative activation of transgene expression via both chemogenetic and optogenetic approaches in mammalian cells and mice. Both the pulse amplitude and duration of transgene expression are highly tunable via adjustment of the amount of furimazine. We further demonstrated LuminON-mediated blood-glucose homeostasis in type 1 diabetic mice. We believe that the BRET-based LuminON system with the pulsatile dynamics of transgene expression provides a highly sensitive tool for precise manipulation in biological systems that has strong potential for application in diverse basic biological studies and gene- and cell-based precision therapies in the future.
96.

Steering Molecular Activity with Optogenetics: Recent Advances and Perspectives.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Adv Biol, 14 Jan 2021 DOI: 10.1002/adbi.202000180 Link to full text
Abstract: Optogenetics utilizes photosensitive proteins to manipulate the localization and interaction of molecules in living cells. Because light can be rapidly switched and conveniently confined to the sub‐micrometer scale, optogenetics allows for controlling cellular events with an unprecedented resolution in time and space. The past decade has witnessed an enormous progress in the field of optogenetics within the biological sciences. The ever‐increasing amount of optogenetic tools, however, can overwhelm the selection of appropriate optogenetic strategies. Considering that each optogenetic tool may have a distinct mode of action, a comparative analysis of the current optogenetic toolbox can promote the further use of optogenetics, especially by researchers new to this field. This review provides such a compilation that highlights the spatiotemporal accuracy of current optogenetic systems. Recent advances of optogenetics in live cells and animal models are summarized, the emerging work that interlinks optogenetics with other research fields is presented, and exciting clinical and industrial efforts to employ optogenetic strategy toward disease intervention are reported.
97.

Optogenetics: The Art of Illuminating Complex Signaling Pathways.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Physiology (Bethesda), 1 Jan 2021 DOI: 10.1152/physiol.00022.2020 Link to full text
Abstract: Dissection of cell signaling requires tools that can mimic spatiotemporal dynamics of individual pathways in living cells. Optogenetic methods enable manipulation of signaling processes with precise timing and local control. In this review, we describe recent optogenetic approaches for regulation of cell signaling, highlight their advantages and limitations, and discuss examples of their application.
98.

Photobiologically Directed Assembly of Gold Nanoparticles.

blue PtAU1-LOV VVD in vitro Extracellular optogenetics
Adv Biol, 30 Dec 2020 DOI: 10.1002/adbi.202000179 Link to full text
Abstract: In nature, photoreceptor proteins undergo molecular responses to light, that exhibit supreme fidelity in time and space and generally occur under mild reaction conditions. To unlock these traits for material science, the light‐induced homodimerization of light‐oxygen‐voltage (LOV) photoreceptors is leveraged to control the assembly of gold nanoparticles. Conjugated to genetically encodable LOV proteins, the nanoparticles are monodispersed in darkness but rapidly assemble into large aggregates upon blue‐light exposure. The work establishes a new modality for reaction control in macromolecular chemistry and thus augurs enhanced precision in space and time in diverse applications of gold nanoparticles.
99.

Steric and Electronic Interactions at Gln154 in ZEITLUPE Induce Reorganization of the LOV Domain Dimer Interface.

blue LOV domains Background
Biochemistry, 18 Dec 2020 DOI: 10.1021/acs.biochem.0c00819 Link to full text
Abstract: Plants measure light quality, intensity, and duration to coordinate growth and development with daily and seasonal changes in environmental conditions; however, the molecular details linking photochemistry to signal transduction remain incomplete. Two closely related light, oxygen, or voltage (LOV) domain-containing photoreceptor proteins, ZEITLUPE (ZTL) and FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1), divergently regulate the protein stability of circadian clock and photoperiodic flowering components to mediate daily and seasonal development. Using structural approaches, we identified that mutations at the Gly46 position led to global rearrangements of the ZTL dimer interface in the isolated ZTL-LOV domain. Specifically, G46S and G46A variants induce a 180° rotation about the ZTL-LOV dimer interface that is coupled to ordering of N- and C-terminal signaling elements. These conformational changes hinge upon rotation of a C-terminal Gln residue (Gln154) analogous to that present in light-state structures of ZTL. In contrast to other LOV proteins, a Q154L variant retains light-state interactions with GIGANTEA (GI), thereby indicating N5 protonation is not required for ZTL signaling. The results presented herein confirm a divergent signaling mechanism within ZTL, whereby steric and electronic effects following adduct formation can be sufficient for signal propagation in LOV proteins containing a Gly residue at position 46. Examination of bacterial LOV structures with Gly residues at the equivalent position suggests that mechanisms of signal transduction in LOV proteins may be fluid across the LOV protein family.
100.

Efficient photoactivatable Dre recombinase for cell type-specific spatiotemporal control of genome engineering in the mouse.

blue red CRY2/CIB1 Magnets PhyB/PIF3 VVD HEK293T HeLa HEp-2 mouse in vivo SH-SY5Y Nucleic acid editing
Proc Natl Acad Sci U S A, 14 Dec 2020 DOI: 10.1073/pnas.2003991117 Link to full text
Abstract: Precise genetic engineering in specific cell types within an intact organism is intriguing yet challenging, especially in a spatiotemporal manner without the interference caused by chemical inducers. Here we engineered a photoactivatable Dre recombinase based on the identification of an optimal split site and demonstrated that it efficiently regulated transgene expression in mouse tissues spatiotemporally upon blue light illumination. Moreover, through a double-floxed inverted open reading frame strategy, we developed a Cre-activated light-inducible Dre (CALID) system. Taking advantage of well-defined cell-type-specific promoters or a well-established Cre transgenic mouse strain, we demonstrated that the CALID system was able to activate endogenous reporter expression for either bulk or sparse labeling of CaMKIIα-positive excitatory neurons and parvalbumin interneurons in the brain. This flexible and tunable system could be a powerful tool for the dissection and modulation of developmental and genetic complexity in a wide range of biological systems.
Submit a new publication to our database