STAGING INSTANCE | Import Mastertable

Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: author:"Amir Taslimi"
Showing 1 - 3 of 3 results
1.

Constitutively active Arabidopsis cryptochrome 2 alleles identified using yeast selection and deep mutational scanning.

blue Cryptochromes Background
J Biol Chem, 21 May 2025 DOI: 10.1016/j.jbc.2025.110265 Link to full text
Abstract: The Arabidopsis blue light photoreceptor cryptochrome 2 (CRY2) responds to blue light to initiate a variety of plant light-based behaviors and has been widely used for optogenetic engineering. Despite these important biological functions, the precise photoactivation mechanism of CRY2 remains incompletely understood. In light, CRY2 undergoes tetramerization and binds to partner proteins, including the transcription factor CIB1. Here we used yeast-two hybrid screening and deep mutational scanning to identify CRY2 amino acid changes that result in constitutive interaction with CIB1 in dark. The majority of CRY2 variants showing constitutive CIB1 interaction mapped to two regions, one near the FAD chromophore, and a second region located near the ATP binding site. Further testing of CRY2 variants from each region revealed three mapping near to the FAD binding pocket (D393S, D393A, and M378R) that also form constitutive CRY2-CRY2 homomers in dark, suggesting they adopt global conformational changes that mimic the photoactive state. Characterization of D393S in the homolog pCRY from Chlamydomonas reinhardtii using time-resolved UV-vis spectroscopy revealed that the FAD chromophore fails to form the neutral radical as signaling state upon illumination. Size exclusion chromatography of D393S shows the presence of homomers instead of a monomer in the dark, providing support for a hyperactive variant decoupled from the FAD. Our work provides new insight into photoactivation mechanisms of plant cryptochromes relevant for physiology and optogenetic application by revealing and localizing distinct activation pathways for light-driven CRY2-CIB1 and CRY2-CRY2 interactions.
2.

Optimized second-generation CRY2-CIB dimerizers and photoactivatable Cre recombinase.

blue CRY2/CIB1 HEK293 S. cerevisiae
Nat Chem Biol, 11 Apr 2016 DOI: 10.1038/nchembio.2063 Link to full text
Abstract: Arabidopsis thaliana cryptochrome 2 (AtCRY2), a light-sensitive photosensory protein, was previously adapted for use in controlling protein-protein interactions through light-dependent binding to a partner protein, CIB1. While the existing CRY2-CIB dimerization system has been used extensively for optogenetic applications, some limitations exist. Here, we set out to optimize function of the CRY2-CIB system by identifying versions of CRY2-CIB that are smaller, show reduced dark interaction, and maintain longer or shorter signaling states in response to a pulse of light. We describe minimal functional CRY2 and CIB1 domains maintaining light-dependent interaction and new signaling mutations affecting AtCRY2 photocycle kinetics. The latter work implicates an α13-α14 turn motif within plant CRYs whose perturbation alters signaling-state lifetime. Using a long-lived L348F photocycle mutant, we engineered a second-generation photoactivatable Cre recombinase, PA-Cre2.0, that shows five-fold improved dynamic range, allowing robust recombination following exposure to a single, brief pulse of light.
3.

An optimized optogenetic clustering tool for probing protein interaction and function.

blue CRY2/CRY2 CRY2olig Cos-7 HEK293 S. cerevisiae Control of cytoskeleton / cell motility / cell shape Control of intracellular / vesicular transport
Nat Commun, 18 Sep 2014 DOI: 10.1038/ncomms5925 Link to full text
Abstract: The Arabidopsis photoreceptor cryptochrome 2 (CRY2) was previously used as an optogenetic module, allowing spatiotemporal control of cellular processes with light. Here we report the development of a new CRY2-derived optogenetic module, 'CRY2olig', which induces rapid, robust, and reversible protein oligomerization in response to light. Using this module, we developed a novel protein interaction assay, Light-Induced Co-clustering, that can be used to interrogate protein interaction dynamics in live cells. In addition to use probing protein interactions, CRY2olig can also be used to induce and reversibly control diverse cellular processes with spatial and temporal resolution. Here we demonstrate disrupting clathrin-mediated endocytosis and promoting Arp2/3-mediated actin polymerization with light. These new CRY2-based approaches expand the growing arsenal of optogenetic strategies to probe cellular function.
Submit a new publication to our database