Qr: author:"Angelos Constantinou"
Showing 1 - 4 of 4 results
1.
KIF2C condensation concentrates PLK1 and phosphorylated BRCA2 on kinetochore microtubules in mitosis.
-
Skobelkina , A
-
Julien, M
-
Jeannin, S
-
Miron, S
-
Egger, T
-
Chaaban, R
-
Bouvignies, G
-
Alghoul, E
-
Ghouil, R
-
Friel, C
-
Busso, D
-
Cañas, JC
-
Theillet, FX
-
Le Bars, R
-
Carreira, A
-
Constantinou, A
-
Basbous, J
-
Zinn-Justin, S
Abstract:
During mitosis, the microtubule depolymerase KIF2C, the tumor suppressor BRCA2, and the kinase PLK1 contribute to the control of kinetochore-microtubule attachments. Both KIF2C and BRCA2 are phosphorylated by PLK1, and BRCA2 phosphorylated at T207 (BRCA2-pT207) serves as a docking site for PLK1. Reducing this interaction results in unstable microtubule-kinetochore attachments. Here we identified that KIF2C also directly interacts with BRCA2-pT207. Indeed, the N-terminal domain of KIF2C adopts a Tudor/PWWP/MBT fold that unexpectedly binds to phosphorylated motifs. Using an optogenetic platform, we found that KIF2C forms membrane-less organelles that assemble through interactions mediated by this phospho-binding domain. KIF2C condensation does not depend on BRCA2-pT207 but requires active Aurora B and PLK1 kinases. Moreover, it concentrates PLK1 and BRCA2-pT207 in an Aurora B-dependent manner. Finally, KIF2C depolymerase activity promotes the formation of KIF2C condensates, but strikingly, KIF2C condensates exclude tubulin: they are located on microtubules, especially at their extremities. Altogether, our results suggest that, during the attachment of kinetochores to microtubules, the assembly of KIF2C condensates amplifies PLK1 and KIF2C catalytic activities and spatially concentrates BRCA2-pT207 at the extremities of microtubules. We propose that this novel and highly regulated mechanism contributes to the control of microtubule-kinetochore attachments, chromosome alignment, and stability.
2.
Spatial organization and functions of Chk1 activation by TopBP1 biomolecular condensates.
Abstract:
Assembly of TopBP1 biomolecular condensates triggers activation of the ataxia telangiectasia-mutated and Rad3-related (ATR)/Chk1 signaling pathway, which coordinates cell responses to impaired DNA replication. Here, we used optogenetics and reverse genetics to investigate the role of sequence-specific motifs in the formation and functions of TopBP1 condensates. We propose that BACH1/FANCJ is involved in the partitioning of BRCA1 within TopBP1 compartments. We show that Chk1 is activated at the interface of TopBP1 condensates and provide evidence that these structures arise at sites of DNA damage and in primary human fibroblasts. Chk1 phosphorylation depends on the integrity of a conserved arginine motif within TopBP1's ATR activation domain (AAD). Its mutation uncouples Chk1 activation from TopBP1 condensation, revealing that optogenetically induced Chk1 phosphorylation triggers cell cycle checkpoints and slows down replication forks in the absence of DNA damage. Together with previous work, these data suggest that the intrinsically disordered AAD encodes distinct molecular steps in the ATR/Chk1 pathway.
3.
An optogenetic proximity labeling approach to probe the composition of inducible biomolecular condensates in cultured cells.
Abstract:
Inducible biomolecular condensates play fundamental roles in cellular responses to intracellular and environmental cues. Knowledge about their composition is crucial to understand the functions that arise specifically from the assembly of condensates. This protocol combines an optogenetic and an efficient proximity labeling approach to analyze protein modifications driven by protein condensation in cultured cells. Low endogenous biotin level ensures sharp signals. For complete details on the use and execution of this protocol, please refer to Frattini et al. (2021).
4.
TopBP1 assembles nuclear condensates to switch on ATR signaling.
Abstract:
ATR checkpoint signaling is crucial for cellular responses to DNA replication impediments. Using an optogenetic platform, we show that TopBP1, the main activator of ATR, self-assembles extensively to yield micrometer-sized condensates. These opto-TopBP1 condensates are functional entities organized in tightly packed clusters of spherical nano-particles. TopBP1 condensates are reversible, occasionally fuse, and co-localize with TopBP1 partner proteins. We provide evidence that TopBP1 condensation is a molecular switch that amplifies ATR activity to phosphorylate checkpoint kinase 1 (Chk1) and slow down replication forks. Single amino acid substitutions of key residues in the intrinsically disordered ATR activation domain disrupt TopBP1 condensation and consequently ATR/Chk1 signaling. In physiologic salt concentration and pH, purified TopBP1 undergoes liquid-liquid phase separation in vitro. We propose that the actuation mechanism of ATR signaling is the assembly of TopBP1 condensates driven by highly regulated multivalent and cooperative interactions.