STAGING INSTANCE | Import Mastertable

Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: author:"Chunli Han"
Showing 1 - 2 of 2 results
1.

Hydrogel microcapsules containing engineered bacteria for sustained production and release of protein drugs.

blue EL222 E. coli Transgene expression Cell death
Biomaterials, 5 Jun 2022 DOI: 10.1016/j.biomaterials.2022.121619 Link to full text
Abstract: Subcutaneous administration of sustained-release formulations is a common strategy for protein drugs, which avoids first pass effect and has high bioavailability. However, conventional sustained-release strategies can only load a limited amount of drug, leading to insufficient durability. Herein, we developed microcapsules based on engineered bacteria for sustained release of protein drugs. Engineered bacteria were carried in microcapsules for subcutaneous administration, with a production-lysis circuit for sustained protein production and release. Administrated in diabetic rats, engineered bacteria microcapsules was observed to smoothly release Exendin-4 for 2 weeks and reduce blood glucose. In another example, by releasing subunit vaccines with bacterial microcomponents as vehicles, engineered bacterial microcapsules activated specific immunity in mice and achieved tumor prevention. The engineered bacteria microcapsules have potential to durably release protein drugs and show versatility on the size of drugs. It might be a promising design strategy for long-acting in situ drug factory.
2.

Engineered NIR light-responsive bacteria as anti-tumor agent for targeted and precise cancer therapy.

blue EL222 E. coli Signaling cascade control
Lancet Infect Dis, 5 Jul 2021 DOI: 10.1016/j.cej.2021.130842 Link to full text
Abstract: Engineered anaerobic bacteria known as live biotherapeutic products (LBPs) have shown great advances in cancer therapy. One advantage of anaerobic bacteria as drug carrier is that it spontaneously target to tumor and persistently release anti-tumor factors. To realize effective anti-cancer therapeutics, one essential premise is to improve the controllability of treatment. Here, we designed near-infrared (NIR)-light responsive bacteria as anti-tumor agent, which is based on a blue-light responsive module and upconversion nanoparticles. The upconversion nanoparticles converted external NIR light to local blue light to noninvasively activate blue-light responsive module (EL222) in engineered LBPs. The activated LBPs then produce tumor necrosis factor α (TNFα) for precise tumor ablation. In vitro and in vivo results have proven that this engineered NIR-light-responsive bacteria could efficiently inhibit tumor growth. We anticipate that this controllable and safe bacteria-based therapy can facilitate the application of LBPs to accurately and effectively regulate diseases.
Submit a new publication to our database