STAGING INSTANCE | Import Mastertable

Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: author:"Eileen E M Furlong"
Showing 1 - 2 of 2 results
1.

Chip (Ldb1) is a putative cofactor of Zelda forming a functional bridge to CBP during zygotic genome activation.

blue AsLOV2 D. melanogaster in vivo Transgene expression Developmental processes
Mol Cell, 19 Jun 2025 DOI: 10.1016/j.molcel.2025.05.018 Link to full text
Abstract: The cofactor LIM-domain-binding protein 1 (Ldb1) is linked to many processes in gene regulation, including enhancer-promoter communication, interchromosomal interactions, and enhanceosome-cofactor-like activity. However, its functional requirement and molecular role during embryogenesis remain unclear. Here, we used optogenetics (iLEXY) to rapidly deplete Drosophila Ldb1 (Chip) from the nucleus at precise time windows. Remarkably, this pinpointed the essential window of Chip’s function to just 1 h of embryogenesis, overlapping zygotic genome activation (ZGA). We show that Zelda, a pioneer factor essential for ZGA, recruits Chip to chromatin, and both factors regulate concordant changes in gene expression, suggesting that Chip is a cofactor of Zelda. Chip does not significantly impact chromatin architecture at these stages, but instead recruits CBP, and is essential for H3K27ac deposition at enhancers and promoters, and for the proper expression of co-regulated genes. These data identify Chip as a functional bridge between Zelda and the coactivator CBP to regulate gene expression in early embryogenesis.
2.

Extremely rapid and reversible optogenetic perturbation of nuclear proteins in living embryos.

blue AsLOV2 D. melanogaster in vivo Kc167 Schneider 2 Developmental processes
Dev Cell, 3 Aug 2021 DOI: 10.1016/j.devcel.2021.07.011 Link to full text
Abstract: Many developmental regulators have complex and context-specific roles in different tissues and stages, making the dissection of their function extremely challenging. As regulatory processes often occur within minutes, perturbation methods that match these dynamics are needed. Here, we present the improved light-inducible nuclear export system (iLEXY), an optogenetic loss-of-function approach that triggers translocation of proteins from the nucleus to the cytoplasm. By introducing a series of mutations, we substantially increased LEXY's efficiency and generated variants with different recovery times. iLEXY enables rapid (t1/2 < 30 s), efficient, and reversible nuclear protein depletion in embryos, and is generalizable to proteins of diverse sizes and functions. Applying iLEXY to the Drosophila master regulator Twist, we phenocopy loss-of-function mutants, precisely map the Twist-sensitive embryonic stages, and investigate the effects of timed Twist depletions. Our results demonstrate the power of iLEXY to dissect the function of pleiotropic factors during embryogenesis with unprecedented temporal precision.
Submit a new publication to our database