STAGING INSTANCE | Import Mastertable

Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: author:"Lulu Jiang"
Showing 1 - 2 of 2 results
1.

Tau Oligomerization Drives Neurodegeneration via Nuclear Membrane Invagination and Lamin B Receptor Binding in Alzheimer’s disease.

blue CRY2olig human IPSCs Organelle manipulation
bioRxiv, 23 May 2025 DOI: 10.1101/2025.05.21.655370 Link to full text
Abstract: The microtubule-associated protein tau aggregates into oligomeric complexes that highly correlate with Alzheimer’s disease (AD) progression. Increasing evidence suggests that nuclear membrane disruption occurs in AD and related tauopathies, but whether this is a cause or consequence of neurodegeneration remains unclear. Using the optogenetically inducible 4R1N Tau::mCherry::Cry2Olig (optoTau) system in iPSC-derived neurons, we demonstrate that tau oligomerization triggers nuclear rupture and nuclear membrane invagination. Pathological tau accumulates at sites of invagination, inducing structural abnormalities in the nuclear envelope and piercing into the nuclear space. These findings were confirmed in the humanized P301S tau (PS19) transgenic mouse model, where nuclear envelope disruption appeared as an early-onset event preceding neurodegeneration. Further validation in post-mortem AD brain tissues revealed nuclear lamina disruption correlating with pathological tau emergence in early-stage patients. Notably, electron microscopy shows that tau-induced nuclear invagination triggers global chromatin reorganization, potentially driving aberrant gene expression and protein translation associated with AD. These findings suggest that nuclear membrane disruption is an early and possibly causative event in tau-mediated neurodegeneration, establishing a mechanistic link between tau oligomerization and nuclear stress. Further investigation into nuclear destabilization could inform clinical strategies for mitigating AD pathogenesis.
2.

Interaction of tau with HNRNPA2B1 and N6-methyladenosine RNA mediates the progression of tauopathy.

blue CRY2olig HEK293T Neuro-2a primary mouse cortical neurons SH-SY5Y Organelle manipulation
Mol Cell, 20 Aug 2021 DOI: 10.1016/j.molcel.2021.07.038 Link to full text
Abstract: The microtubule-associated protein tau oligomerizes, but the actions of oligomeric tau (oTau) are unknown. We have used Cry2-based optogenetics to induce tau oligomers (oTau-c). Optical induction of oTau-c elicits tau phosphorylation, aggregation, and a translational stress response that includes stress granules and reduced protein synthesis. Proteomic analysis identifies HNRNPA2B1 as a principle target of oTau-c. The association of HNRNPA2B1 with endogenous oTau was verified in neurons, animal models, and human Alzheimer brain tissues. Mechanistic studies demonstrate that HNRNPA2B1 functions as a linker, connecting oTau with N6-methyladenosine (m6A) modified RNA transcripts. Knockdown of HNRNPA2B1 prevents oTau or oTau-c from associating with m6A or from reducing protein synthesis and reduces oTau-induced neurodegeneration. Levels of m6A and the m6A-oTau-HNRNPA2B1 complex are increased up to 5-fold in the brains of Alzheimer subjects and P301S tau mice. These results reveal a complex containing oTau, HNRNPA2B1, and m6A that contributes to the integrated stress response of oTau.
Submit a new publication to our database